BRIGE: One-Dimensional PdFe Core- Pt Shell Nanowires for Oxygen Reduction Reaction

BRIGE:用于氧还原反应的一维 PdFe 核-铂壳纳米线

基本信息

  • 批准号:
    1032547
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

1032547Li The research objective of the NSF-BRIGE proposal is to investigate a novel one-dimensional axial PdFe core - Pt shell nanowires, which have advantageous crystallographic facets and tuned electronic properties, and can be used as efficient cathode catalysts for electrochemical energy conversion and storage devices. The overall goals are to acquire fundamental understanding of controlled wet-chemical synthesis of metallic nanocatalysts at the atomic and nano- scale, and gain knowledge of structure-catalytic functionality relationship of multi-metallic electrocatalytic systems. The career goal of the PI is to establish a world-class Nano Electrochemical Energy Program at Michigan Technological University (Michigan Tech) incorporating catalysis and clean energy with engineering, and integrating teaching / training / learning with research. Intellectual merits: Sustainably meeting humanity's energy needs has been identified as a primary research challenge for the next fifty years. Without Carnot limitation, electrochemical energy devices directly convert chemical energy of fuels (i.e. H2, ethanol, Zinc, etc) into electricity with high theoretical efficiency. However, the sluggish kinetics of oxygen reduction reaction (ORR) at cathode has been a long-standing scientific issue, which significantly reduces the electrochemical energy conversion efficiency. The PI's group has started a rigorous research on "accurate preparation of metallic nanostructures", and they have developed a wet-chemical approach to synthesis of 1-D PtFe/PdFe alloy nanowires with large electrochemical surface area and good durability. The working hypothesis is that PdFe core- Pt shell nanowires can 1) greatly improve ORR activity due to more active crystallographic facet Pt {111} on surface and optimized d-band center of surface Pt atoms; 2) significantly enhance durability due to less thermal-driven coalescence. To test this hypothesis, the PI proposes to conduct transformative research in the area of nanostructured catalysts for electrochemical energy. The specific research tasks of this proposal include: 1) precise synthesis and full characterization of carbon supported 1-D PdFe core- Pt shell nanowires (PdFe@Pt-NW/C) catalysts, 2) investigate electrochemical performance of PdFe@Pt-NW/C in three-compartment-cell, and 3) ORR and durability study in real electrochemical energy device. This NSF-BRIGE proposal fits well into the PI's long-term research interest of studying controlled synthesis of novel nanoengineered materials and understanding their electrocatalytic reaction mechanisms. Broader Impacts: The project activities will have a broad impact on research, education and outreach efforts in the Great Lakes Region through Michigan Tech's established infrastructure. The knowledge and technology generated from the research activities will advance accurate synthesis of novel catalysts at the atomic and nano- scale, and deepen understanding of structure-catalytic functionality relationship (specifically, "Pt skin-PdFe substrate interaction" with ORR activity) of multimetallic catalysts. This research effort will initiate close research collaborations with industry. It will propel development of advanced materials, deliver new discoveries, enhance Michigan Tech's infrastructure and technology-transfer, and strengthen Michigan Tech's on-going "sustainable energy" activities. This research will also help upgrade fabrication techniques of clean electrochemical energy devices. In particular, it will support the nation?s efforts to diversify its energy supply and reduce dependence on foreign oil. The proposed educational plan is to design and produce a Clean Energy Workbook. The Workbook will serve as a unique material in clean energy and catalysis education for undergraduate and secondary students. One primary audience will include diverse groups of 6th-12th grade students who participate in Michigan Tech's existing summer youth program (SYP) and diverse community college students in the existing Michigan College & University Program (MICUP), in which the majority of students are primarily drawn from traditionally underrepresented groups in science and engineering. The proposed research and education plan will help to bring more engineers from groups traditionally underrepresented (female, African American, Hispanic and Native American, disabled) into engineering areas by working on cutting-edge Nanocatalyst Technology. Exposing young students to the catalysis, clean energy, and nanotechnology research environment will inspire their curiosity and interest in science, engineering, and technology, and benefit society by sustainably supplying a number of diverse, next generation researchers that serve as role models for the scientific workforce of the future.
1032547Li NSF-BRIGE提案的研究目标是研究一种新型一维轴向PdFe核-Pt壳纳米线,其具有有利的晶体学面和可调的电子性能,可用作电化学能量转换和存储的高效阴极催化剂设备。总体目标是获得对原子和纳米尺度金属纳米催化剂的受控湿化学合成的基本了解,并了解多金属电催化系统的结构-催化功能关系。 PI的职业目标是在密歇根理工大学(Michigan Tech)建立世界一流的纳米电化学能源项目,将催化和清洁能源与工程相结合,并将教学/培训/学习与研究相结合。 智力优势:可持续地满足人类的能源需求已被确定为未来五十年的主要研究挑战。电化学能源装置不受卡诺限制,直接将燃料(即H2、乙醇、锌等)的化学能转化为电能,理论效率很高。然而,阴极氧还原反应(ORR)动力学缓慢一直是一个长期存在的科学问题,这显着降低了电化学能量转换效率。 PI课题组已开始对“金属纳米结构的精确制备”进行严格的研究,他们开发了一种湿化学方法来合成具有大电化学表面积和良好耐久性的一维PtFe/PdFe合金纳米线。工作假设是,PdFe核-Pt壳纳米线可以1)由于表面上更活跃的晶面Pt{111}和表面Pt原子的优化的d带中心而大大提高ORR活性; 2)由于较少的热驱动聚结,显着增强了耐用性。为了检验这一假设,首席研究员建议在电化学能源纳米结构催化剂领域进行变革性研究。该提案的具体研究任务包括:1)碳负载一维PdFe核-Pt壳纳米线(PdFe@Pt-NW/C)催化剂的精确合成和全面表征,2)研究PdFe@Pt-NW的电化学性能三室电池中的/C,以及3)真实电化学能源装置中的ORR和耐久性研究。 NSF-BRIGE 的这项提案非常符合 PI 的长期研究兴趣,即研究新型纳米工程材料的受控合成并了解其电催化反应机制。 更广泛的影响:该项目活动将通过密歇根理工学院现有的基础设施对五大湖地区的研究、教育和推广工作产生广泛的影响。研究活动产生的知识和技术将促进原子和纳米尺度新型催化剂的精确合成,并加深对多金属结构-催化功能关系(特别是“Pt皮-PdFe基底相互作用”与ORR活性)的理解。催化剂。这项研究工作将启动与业界的密切研究合作。它将推动先进材料的开发,带来新发现,增强密歇根理工学院的基础设施和技术转让,并加强密歇根理工学院正在进行的“可持续能源”活动。这项研究还将有助于升级清洁电化学能源器件的制造技术。特别是,它将支持该国实现能源供应多元化和减少对外国石油依赖的努力。拟议的教育计划是设计和制作一本清洁能源工作手册。该手册将作为本科生和中学生清洁能源和催化教育的独特材料。主要受众之一将包括参加密歇根理工学院现有暑期青年计划 (SYP) 的 6 至 12 年级学生群体以及参与现有密歇根学院和大学计划 (MICUP) 的不同社区学院学生,其中大多数学生主要是来自传统上代表性不足的科学和工程群体。拟议的研究和教育计划将有助于通过研究尖端纳米催化剂技术,将更多来自传统上代表性不足的群体(女性、非裔美国人、西班牙裔和美洲原住民、残疾人)的工程师带入工程领域。让年轻学生接触催化、清洁能源和纳米技术研究环境,将激发他们对科学、工程和技术的好奇心和兴趣,并通过可持续地提供一批多元化的下一代研究人员作为科学界的榜样,造福社会。未来的劳动力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenzhen Li其他文献

Association of weight change across adulthood with hearing loss: A retrospective cohort study
成年期体重变化与听力损失的关联:一项回顾性队列研究
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Wenzhen Li;Ying Peng;Dajie Chen;Zuxun Lu;Yueqing Tao
  • 通讯作者:
    Yueqing Tao
Superconducting Epitaxial (TlBi)0.9Sr1.6Ba0.4Ca2 Cu3Ag0.2Ox Film from an Electrodeposited Precursor.
来自电解沉积前驱体的超导外延 (TlBi)0.9Sr1.6Ba0.4Ca2 Cu3Ag0.2Ox 薄膜。
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Bhattacharya;R. Blaugher;Z. Ren;Wenzhen Li;J. H. Wang;M. Paranthaman;D. Verebelyi;D. Christen
  • 通讯作者:
    D. Christen
An Examination of Influential Factors on Gamification in Higher Education: A Content Analysis
高等教育游戏化影响因素考察:内容分析
Examining the effects of positive and negative perfectionism and maternal burnout
检查积极和消极完美主义和母亲倦怠的影响
Using an Online Learning Management System as Collaborative Media to Support Adult Learning: Needs Assessment
使用在线学习管理系统作为协作媒体来支持成人学习:需求评估
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leping Liu;Wenzhen Li
  • 通讯作者:
    Wenzhen Li

Wenzhen Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wenzhen Li', 18)}}的其他基金

Collaborative Research: RII Track-2 FEC: Promoting N2O- and CO2-Relieved Nitrogen Fertilizers for Climate Change-Threatened Midwest Farming and Ranching
合作研究:RII Track-2 FEC:为受气候变化威胁的中西部农业和牧场推广不含 N2O 和 CO2 的氮肥
  • 批准号:
    2316481
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: ECO-CBET: Convergent Electrolysis-Electrodialysis System (CEES) to Curb Urban Chloride Pollution by Eco-friendly Road Deicing and Waste Salt Upcycling
合作研究:ECO-CBET:融合电解电渗析系统(CEES)通过环保道路除冰和废盐升级回收来抑制城市氯污染
  • 批准号:
    2219162
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
FMSG: Electrochemical Upcycling of Waste Nitrates for Eco-Manufacturing of Nitrogen-Based Chemicals
FMSG:废硝酸盐的电化学升级循环用于氮基化学品的生态制造
  • 批准号:
    2036944
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Paired Electrolyzers for Efficient Conversion of Furanic Compounds to Valuable Chemicals
配对电解槽可将呋喃化合物有效转化为有价值的化学品
  • 批准号:
    1947435
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrochemical Reduction of CO2 to Small Organic Fuels on Encapsulated Metal Catalysts in Gas Diffusion Electrode Environment
合作研究:气体扩散电极环境中封装金属催化剂将二氧化碳电化学还原为小分子有机燃料
  • 批准号:
    1501113
  • 财政年份:
    2014
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Selective Electrocatalytic Oxidation of Biorenewable Polyols over Bimetal Catalysts
双金属催化剂上生物可再生多元醇的选择性电催化氧化
  • 批准号:
    1501124
  • 财政年份:
    2014
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrochemical Reduction of CO2 to Small Organic Fuels on Encapsulated Metal Catalysts in Gas Diffusion Electrode Environment
合作研究:气体扩散电极环境中封装金属催化剂将二氧化碳电化学还原为小分子有机燃料
  • 批准号:
    1235982
  • 财政年份:
    2012
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Selective Electrocatalytic Oxidation of Biorenewable Polyols over Bimetal Catalysts
双金属催化剂上生物可再生多元醇的选择性电催化氧化
  • 批准号:
    1159448
  • 财政年份:
    2012
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

多级多维度手性自组装体的精准构筑及其可见光-不对称双功能催化研究
  • 批准号:
    22372145
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多维度高次谐波谱中的多电子动力学研究
  • 批准号:
    12304304
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于纳米孔多维度数据的恶性胶质瘤基因组结构变异异质性及调控网络研究
  • 批准号:
    32300522
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海马-前额叶在认知地图构建中的作用:基于不同维度与空间的对比研究
  • 批准号:
    32371101
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多尺度多维度原位研究退役锂离子电池三元正极材料的直接再生机理
  • 批准号:
    22375081
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
  • 批准号:
    2473795
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Studentship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了