GEOMETRY AND TOPOLOGY OF THE MODULI SPACES OF RIEMANN SURFACES AND CALABI-YAU MANIFOLDS

黎曼曲面和卡拉比-丘流形模空间的几何和拓扑

基本信息

  • 批准号:
    1007053
  • 负责人:
  • 金额:
    $ 32.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Moduli spaces of Riemann surfaces and Calabi-Yau manifolds have played fundamental roles in many subjects of mathematics from geometry, topology, algebraic geometry, to number theory. They are also important objects in string theory. The principal investigator proposes to have an intensive study by combining differential geometric methods with other newly developed techniques to solve several fundamental problems about the geometry and topology of moduli spaces of Riemann surfaces and Calabi-Yau manifolds. Differential geometric methods combined with algebraic geometry and combinatorial methods have been very successful in proving various important conjectures such as the Marino-Vafa conjecture, the Faber intersection number conjecture and the Labastilda-Marino-Ooguri-Vafa conjecture in our previous work. Based on these and other geometric results, the PI will further understand and solve several important problems including finding the explicit tautological ring structure of the moduli spaces of Riemann surfaces, proving the general string duality conjecture and solving the general Torelli problem for projective manifolds and clarifying its relation to mirror symmetry. Calabi-Yau manifolds are very important in string theory, the most promising theory to unify the four fundamental forces in the Nature. They are the shapes that satisfy the requirement of space for the six hidden spatial dimensions of string theory, which must be contained in a space smaller than our currently observable lengths. Riemann surfaces are called world-sheet in string theory which are the most basic objects in conformal field theory. The recent development of string duality in string theory has motivated many exciting new mathematical results. Many fundamental computations in string theory and quantum field theory are often reduced to certain integrals on moduli spaces of Riemann surfaces and Calabi-Yau manifolds. By comparing the mathematical descriptions of different string theories, one often reveals quite deep and unexpected mathematical conjectures, many of which are related to moduli spaces of Riemann surfaces and Calabi-Yau manifolds. The mathematical proofs of these conjectures often help verify the physical theories which cannot be achieved today through traditional experiments. Our project will lead to very strong impacts on several major fields of mathematics and theoretical physics. This program will not only help verify certain important physical theories in string theory, but also produce beautiful and fundamental results in mathematics. In carrying out the project we will also train several young students and post-doctors to conduct research in these subjects through collaboration and lectures.
黎曼曲面和卡拉比-丘流形的模空间在从几何、拓扑、代数几何到数论的许多数学学科中发挥着基础作用。它们也是弦理论中的重要对象。课题负责人提出将微分几何方法与其他新发展技术相结合进行深入研究,解决黎曼曲面和卡拉比-丘流形模空间几何和拓扑的几个基本问​​题。我们前期的工作中,微分几何方法与代数几何和组合方法相结合,非常成功地证明了各种重要猜想,如Marino-Vafa猜想、Faber交数猜想和Labastilda-Marino-Ooguri-Vafa猜想。基于这些和其他几何结果,PI将进一步理解和解决几个重要问题,包括找到黎曼曲面模空间的显式同义反复环结构、证明一般弦对偶猜想、求解射影流形的一般托雷利问题和澄清它与镜像对称的关系。卡拉比-丘流形在弦理论中非常重要,弦理论是统一自然界四种基本力最有希望的理论。它们是满足弦理论的六个隐藏空间维度的空间要求的形状,它们必须包含在小于我们当前可观察长度的空间中。黎曼曲面在弦理论中被称为世界面,是共形场论中最基本的对象。弦理论中弦对偶性的最新发展激发了许多令人兴奋的新数学结果。弦论和量子场论中的许多基本计算通常被简化为黎曼曲面和卡拉比-丘流形的模空间上的某些积分。通过比较不同弦理论的数学描述,常常会揭示出相当深奥且意想不到的数学猜想,其中许多猜想与黎曼曲面和卡拉比-丘流形的模空间有关。这些猜想的数学证明往往有助于验证当今通过传统实验无法实现的物理理论。我们的项目将对数学和理论物理的几个主要领域产生非常强烈的影响。该程序不仅有助于验证弦理论中某些重要的物理理论,而且还能在数学方面产生漂亮且基础的结果。在开展该项目的过程中,我们还将通过合作和讲座的方式,培训多名青年学生和博士后进行这些学科的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kefeng Liu其他文献

GROUP TOPOLOGIES ON AUTOMORPHISM GROUPS OF HOMOGENEOUS STRUCTURES
齐次结构自同构群的群拓扑
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. A. G. Hadernezhad;DE Javier;L. G. Onzalez;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang
  • 通讯作者:
    Ruixiang Zhang
A ug 2 00 4 A MATHEMATICAL THEORY OF THE TOPOLOGICAL VERTEX
A ug 2 00 4 拓扑顶点的数学理论
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Jun;Chiu;Kefeng Liu;Jian Zhou
  • 通讯作者:
    Jian Zhou
Genome-Wide Comparative Analyses of Pigmentation Genes in Four Fish Species Provides Insights on Fish Skin Color Patterning
对四种鱼类色素沉着基因的全基因组比较分析为鱼类肤色模式提供了见解
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Jia;Na Zhao;Xiaoxu He;K. Peng;Kefeng Liu;Bo Zhang
  • 通讯作者:
    Bo Zhang
ZNF 280 B promotes the growth of gastric cancer in vitro and in vivo
ZNF 280 B 在体外和体内促进胃癌生长
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing;Zhengxu Yang;Xiao;G. Yao;An Yanhui;Wei Wang;Yonggang Fan;Chao Zeng;Kefeng Liu
  • 通讯作者:
    Kefeng Liu
Logarithmic vanishing theorems for effective q-ample divisors
有效 q 充足除数的对数消失定理
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kefeng Liu;Xueyuan Wan;Xiaokui Yang
  • 通讯作者:
    Xiaokui Yang

Kefeng Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kefeng Liu', 18)}}的其他基金

Geometry of Deformation and Moduli Spaces of Complex Manifolds
复流形的变形几何和模空间
  • 批准号:
    1510216
  • 财政年份:
    2015
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Standard Grant
LOCALIZATION, STRING DUALITY AND MODULI SPACES
定域化、弦对偶性和模空间
  • 批准号:
    0705284
  • 财政年份:
    2007
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Continuing Grant
Strings 2006 Conference
2006年弦乐会议
  • 批准号:
    0628944
  • 财政年份:
    2006
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Standard Grant
Mathematical Aspects of String Duality
弦对偶性的数学方面
  • 批准号:
    0405117
  • 财政年份:
    2004
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Standard Grant
Geometry and Topology of Counting Curves in Projective Manifolds
射影流形中计数曲线的几何和拓扑
  • 批准号:
    0196544
  • 财政年份:
    2001
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Standard Grant
Geometry and Topology of Counting Curves in Projective Manifolds
射影流形中计数曲线的几何和拓扑
  • 批准号:
    0072182
  • 财政年份:
    2000
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Standard Grant
Applications of Modular Invariance in Geometry and Topology
模不变性在几何和拓扑中的应用
  • 批准号:
    9803234
  • 财政年份:
    1998
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Standard Grant

相似国自然基金

基于承载和装配融合的非线性框架结构模块化拓扑优化方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
温差发电系统中模块结构构型、布局与电连接拓扑协同优化设计
  • 批准号:
    11972105
  • 批准年份:
    2019
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
新型点击聚合体系探索及全取代1,2,3-三氮唑类序列定义聚合物的合成研究
  • 批准号:
    21871023
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
树枝状模块化可溶性CMP的设计构筑及其光功能性研究
  • 批准号:
    21805043
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
新一代高性能直流型光伏集成发电模块系统研究
  • 批准号:
    51277195
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
  • 批准号:
    2349810
  • 财政年份:
    2024
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Standard Grant
Geometry and Topology of Moduli Spaces
模空间的几何和拓扑
  • 批准号:
    RGPIN-2022-04908
  • 财政年份:
    2022
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Topology of Moduli Spaces
模空间的几何和拓扑
  • 批准号:
    RGPIN-2022-04908
  • 财政年份:
    2022
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Moduli of curves via topology, geometry, and arithmetic
职业:通过拓扑、几何和算术计算曲线模
  • 批准号:
    1350075
  • 财政年份:
    2014
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Continuing Grant
SM: Geometry and Topology of Moduli Spaces and Applications
SM:模空间的几何和拓扑及其应用
  • 批准号:
    0603355
  • 财政年份:
    2006
  • 资助金额:
    $ 32.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了