Investigation of Ricci Flows with Bounded Scalar Curvature

具有有界标量曲率的 Ricci 流研究

基本信息

  • 批准号:
    1006518
  • 负责人:
  • 金额:
    $ 13.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2012-03-31
  • 项目状态:
    已结题

项目摘要

The Ricci flow has become an important tool to search classical metrics on manifolds since it first appeared in Hamilton's seminal 1982 paper. As an important evolutionary equation, it sets up a bridge between geometry and topology. In the past three decades, there have been many exciting achievements of the Ricci flow. In 2002, Perelman used the Ricci flow to solve the folklore Poincare conjecture. In 2007, Richard Schoen and Simon Brendle used the Ricci flow to prove the famous sphere theorem. These examples and many others highlight one fact that the Ricci flow is a powerful tool which deserves intensive study. The success of these previous examples is based on the knowledge of the global behavior of the Ricci flows with special conditions. Specially, either the dimension of the underlying manifold is three, or the curvature operator (or isotropic curvature) is nonnegative. However, in a general higher dimensional Ricci flow, we can hardly determine the sign of the curvature operator. The global picture of the Ricci flow is still unclear. There remain a lot of technical difficulties to overcome. Therefore, the study of the Ricci flows with weaker curvature constraints becomes natural and necessary. The Ricci flows' behavior under sectional curvature and Ricci curvature bounds have been solved by Hamilton and Sesum. Naturally, the next step is to understand the behavior of the Ricci flow under the condition that scalar curvature is uniformly bounded. On the other hand, Perelman's fundamental work reveals that there are many Ricci flows where scalar curvature is uniformly bounded. Therefore, the Ricci flows with bounded scalar curvature deserve comprehensive study. My research proposal is to study these Ricci flows.The Ricci flow is an evolution equation solution on a Riemannian manifold. The Ricci flow is an important tool to find Einstein metrics, which are crucial in general relativity and mirror symmetry, my study is closely related to physics and Kahler geometry. It naturally interacts with mathematical physics, algebraic geometry, algebraic topology, complex analysis and partial differential equations. Therefore, the study of the Ricci flow has broader impact outside the area of geometric analysis. Among all Ricci flows, the Ricci flow with bounded scalar curvature is a very important type. This type of Ricci flows appear naturally in many settings. For example, according to the deep work of Perelman, the scalar curvature is uniformly bounded along the Ricci flows on many Kahler manifolds. My research proposal focuses on the study of the Ricci flows with bounded scalar curvature. The success of this project will greatly benefit the understanding of properties of many Riemannian manifolds.
自 1982 年 Hamilton 的开创性论文首次出现以来,Ricci 流已成为搜索流形上经典度量的重要工具。 作为一个重要的演化方程,它在几何学和拓扑学之间架起了一座桥梁。三十年来,利玛窦流取得了许多令人振奋的成就。 2002年,佩雷尔曼利用里奇流解决了民间传说的庞加莱猜想。 2007年,Richard Schoen和Simon Brendle利用Ricci流证明了著名的球面定理。这些例子和许多其他例子强调了一个事实,即里奇流是一个值得深入研究的强大工具。前面这些例子的成功是基于对特殊条件下 Ricci 流的全局行为的了解。特别地,要么底层流形的维数是三,要么曲率算子(或各向同性曲率)是非负的。 然而,在一般的高维Ricci流中,我们很难确定曲率算子的符号。利玛窦流的全球情况仍不清楚。仍有许多技术困难需要克服。因此,研究具有较弱曲率约束的Ricci流就变得自然而必要。 Hamilton 和 Sesum 已经解决了截面曲率和 Ricci 曲率边界下 Ricci 流的行为。 当然,下一步是了解标量曲率一致有界条件下里奇流的行为。另一方面,佩雷尔曼的基础工作揭示了存在许多标量曲率均匀有界的利玛窦流。因此,具有有界标量曲率的Ricci流值得综合研究。我的研究计划是研究这些里奇流。里奇流是黎曼流形上的演化方程解。里奇流是寻找爱因斯坦度量的重要工具,爱因斯坦度量在广义相对论和镜像对称中至关重要,我的研究与物理学和卡勒几何密切相关。 它自然地与数学物理、代数几何、代数拓扑、复分析和偏微分方程相互作用。 因此,里奇流的研究在几何分析领域之外具有更广泛的影响。 在所有的Ricci流中,有界标量曲率的Ricci流是一个非常重要的类型。这种类型的利玛窦流自然地出现在许多环境中。例如,根据佩雷尔曼的深入研究,标量曲率沿着许多卡勒流形上的里奇流一致有界。我的研究计划侧重于研究具有有界标量曲率的 Ricci 流。该项目的成功将极大地有助于理解许多黎曼流形的性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bing Wang其他文献

Technology of Acid Soil Improvement with Biochar: A Review
生物炭改良酸性土壤技术综述
What is the efficacy of metaphylaxis using antibiotics for the prevention of Bovine Respiratory Disease in beef cattle
使用抗生素预防肉牛呼吸道疾病的效果如何
  • DOI:
    10.1002/bjs.11149
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    A. O'Connor;Chong Wang;J. Sargeant;B. White;R. Larson;Bing Wang;C. Waldner;H. Wood;Julie May Glanville
  • 通讯作者:
    Julie May Glanville
Size-dependent responses of micro-end mill based on strain gradient elasticity theory
基于应变梯度弹性理论的微型立铣刀尺寸相关响应
Research on Metal Atmospheric Storage Tank Inspection Method for Standard in China
我国标准金属常压储罐检验方法研究
  • DOI:
    10.1115/pvp2009-77444
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yadong Wang;Yanting Xu;Bing Wang;Shoubao Ding;Jiele Xu;Mulin Zheng
  • 通讯作者:
    Mulin Zheng
Randomness complexity as a family feature of rolling bearings’ degradation
随机性复杂性是滚动轴承退化的一个系列特征
  • DOI:
    10.21595/jve.2019.20528
  • 发表时间:
    2019-12-31
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Yaolong Li;Hong;Bing Wang;He Yu
  • 通讯作者:
    He Yu

Bing Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bing Wang', 18)}}的其他基金

IMR: MM-1B: Longitudinal End-device based Performance Measurement of Cellular Networks with Provable Privacy
IMR:MM-1B:具有可证明隐私的蜂窝网络基于纵向终端设备的性能测量
  • 批准号:
    2319277
  • 财政年份:
    2023
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS CORE: Small: RUI: Hierarchical Deep Reinforcement Learning for Routing in Mobile Wireless Networks
合作研究:CNS CORE:小型:RUI:移动无线网络中路由的分层深度强化学习
  • 批准号:
    2154191
  • 财政年份:
    2022
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Standard Grant
CyberTraining: Pilot: Cyberinfrastructure Training in Computer Science and Geoscience
网络培训:试点:计算机科学和地球科学的网络基础设施培训
  • 批准号:
    2118102
  • 财政年份:
    2021
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Standard Grant
REU Site: Trustable Embedded Systems Security Research
REU 网站:可信嵌入式系统安全研究
  • 批准号:
    1659764
  • 财政年份:
    2017
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Standard Grant
SCH: EXP: LifeRhythm: A Framework for Automatic and Pervasive Depression Screening Using Smartphones
SCH:EXP:LifeRhythm:使用智能手机进行自动和普遍抑郁症筛查的框架
  • 批准号:
    1407205
  • 财政年份:
    2014
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Standard Grant
EAGER: US Ignite: Enabling Highly Resilient and Efficient Microgrids through Ultra-Fast Programmable Networks
EAGER:US Ignite:通过超快可编程网络实现高弹性和高效的微电网
  • 批准号:
    1419076
  • 财政年份:
    2014
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Standard Grant
CC-NIE Network Infrastructure: Enabling Data-Intensive Research at the University of Connecticut Through Science DMZ
CC-NIE 网络基础设施:通过 Science DMZ 实现康涅狄格大学的数据密集型研究
  • 批准号:
    1341003
  • 财政年份:
    2013
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Standard Grant
Investigation of Ricci Flows with Bounded Scalar Curvature
具有有界标量曲率的 Ricci 流研究
  • 批准号:
    1312836
  • 财政年份:
    2012
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Continuing Grant
Investigation of Ricci Flows with Bounded Scalar Curvature
具有有界标量曲率的 Ricci 流研究
  • 批准号:
    1221330
  • 财政年份:
    2011
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Continuing Grant
CAREER: Automating Wireless Network Management: Lessons from Managing Wireless LANs and Sensor Networks
职业:自动化无线网络管理:管理无线局域网和传感器网络的经验教训
  • 批准号:
    0746841
  • 财政年份:
    2008
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于半实物孪生特征空间Ricci流方法的柔性轴联系统健康评估研究
  • 批准号:
    52375109
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Kähler-Ricci流的奇性分析
  • 批准号:
    12371057
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
四维梯度Ricci孤立子的几何与拓扑
  • 批准号:
    12301062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具非负Ricci曲率流形的拓扑刚性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
四维非紧Ricci收缩型孤立子的分类
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ricci Flows and Steady Ricci Solitons
里奇流和稳态里奇孤子
  • 批准号:
    2203310
  • 财政年份:
    2022
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Standard Grant
Ricci flows for non-smooth spaces, monotonic quantities, and rigidity
适用于非光滑空间、单调量和刚性的 Ricci 流
  • 批准号:
    441873017
  • 财政年份:
    2020
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Priority Programmes
Ricci Flows through Singularities and Ricci Flows with Bounded Scalar Curvature
穿过奇点的里奇流和具有有界标量曲率的里奇流
  • 批准号:
    1906500
  • 财政年份:
    2019
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Continuing Grant
Research on some generalizations of Ricci flows and Ricci solitons
里奇流和里奇孤子的一些推广研究
  • 批准号:
    18K13417
  • 财政年份:
    2018
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Generalizations of (hyper-)Kähler geometry and geometric flows related to Ricci-flat Riemannianmanifolds
与 Ricci 平黎曼流形相关的(超)克勒几何和几何流的推广
  • 批准号:
    405980393
  • 财政年份:
    2018
  • 资助金额:
    $ 13.51万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了