Multi-Scale Modeling of Interdependent Critical Infrastructure System Performance During Hurricanes

飓风期间相互依赖的关键基础设施系统性能的多尺度建模

基本信息

  • 批准号:
    0968711
  • 负责人:
  • 金额:
    $ 25.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

Critical infrastructure systems such as water and electric power networks provide essential services that underlie the economic prosperity, security, and public health of the U.S. These complex, interdependent systems are prone to failure during hurricanes. Improved modeling of the ability of these systems to meet the needs of society after a hurricane makes landfall would substantially improve our ability to manage the risk of these systems failing. However, there are fundamental research needs of both conceptual and computational natures in the area of risk analysis for critical infrastructure systems in hurricane-prone areas. Conceptually, we do not yet have modeling frameworks that allow for accurate prediction of the performance of large-scale interdependent infrastructure systems during hurricanes, a necessary starting point for accurate risk assessment and management. Computationally, many of the available tools that aim to model infrastructure performance at the scale of large metropolitan areas require long run times on large computer clusters, limiting their usefulness for practical infrastructure planning and management. Recent advances in both statistical methods and computing based on graphical processing units (?graphics cards?) enable advances that can address both the conceptual and computational limitations inherent in current approaches for risk analysis for interdependent infrastructure systems in hurricane-prone areas. The focus of this project is on developing methods for accurate performance and risk modeling for interdependent infrastructure systems, methods that are practical for infrastructure managers to use. While the focus of this project is on coupled water and power systems, the advances will have application much more broadly.This project will enable significantly more accurate and rapid risk analysis for interdependent infrastructure systems, allowing highly limited public infrastructure funds to be spent more efficiently and helping to better protect economic and public health during disasters. The models developed in this project will be practical for use on desktop computers with existing higher-end graphics cards, greatly enhancing the ability of infrastructure managers to run these models on their existing computer hardware. In addition, this project will yield insights into the factors that lead interdependent infrastructure systems to be more resilient during a hurricane, helping engineers and utility system managers better understand how to strengthen their systems. In parallel with the research efforts, this project will aim to interest students traditionally underrepresented in engineering programs in pursuing engineering as a career. This will be done through outreach at multiple educational levels.
水和电力网络等关键基础设施系统提供支撑美国经济繁荣、安全和公共卫生的基本服务。这些复杂、相互依赖的系统在飓风期间很容易发生故障。改进对这些系统在飓风登陆后满足社会需求的能力的建模将大大提高我们管理这些系统故障风险的能力。然而,在飓风多发地区关键基础设施系统的风险分析领域,存在概念和计算性质的基础研究需求。从概念上讲,我们还没有能够准确预测飓风期间大规模相互依赖的基础设施系统性能的建模框架,这是准确风险评估和管理的必要起点。在计算方面,许多旨在对大都市区规模的基础设施性能进行建模的可用工具需要在大型计算机集群上运行很长时间,从而限制了它们在实际基础设施规划和管理中的实用性。基于图形处理单元(“显卡”)的统计方法和计算的最新进展使得能够解决飓风多发地区相互依赖的基础设施系统的当前风险分析方法固有的概念和计算限制。该项目的重点是为相互依赖的基础设施系统开发准确的性能和风险建模方法,这些方法对于基础设施管理者来说是实用的。虽然该项目的重点是耦合的水电系统,但这些进步将具有更广泛的应用。该项目将为相互依赖的基础设施系统提供更加准确和快速的风险分析,从而使高度有限的公共基础设施资金能够更有效地使用并帮助在灾害期间更好地保护经济和公共健康。该项目开发的模型将适用于具有现有高端显卡的台式计算机,从而大大增强基础设施管理者在其现有计算机硬件上运行这些模型的能力。此外,该项目还将深入了解导致相互依赖的基础设施系统在飓风期间更具弹性的因素,帮助工程师和公用事业系统经理更好地了解如何加强其系统。在开展研究工作的同时,该项目旨在激发传统上工程项目中代表性不足的学生的兴趣,以追求工程作为职业。这将通过多个教育级别的外展活动来完成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seth Guikema其他文献

Building Trees for Probabilistic Prediction via Scoring Rules
通过评分规则构建概率预测树
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Sara Shashaani;O. Surer;Matthew Plumlee;Seth Guikema
  • 通讯作者:
    Seth Guikema
Estimating pre-impact and post-impact evacuation behaviors – An empirical study of hurricane Ida in coastal Louisiana and Mississippi
评估影响前和影响后的疏散行为——对路易斯安那州沿海和密西西比州飓风艾达的实证研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Jiayun Shen;Pamela M. Murray;Kris Wernstedt;Seth Guikema
  • 通讯作者:
    Seth Guikema
Trust and trustworthy artificial intelligence: A research agenda for AI in the environmental sciences
信任和值得信赖的人工智能:环境科学领域人工智能的研究议程
  • DOI:
    10.1111/risa.14245
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ann Bostrom;J. Demuth;Christopher D. Wirz;Mariana G Cains;Andrea Schumacher;Deianna Madlambayan;A. S. Bansal;A. Bearth;Randy J. Chase;Katherine M. Crosman;I. Ebert‐Uphoff;D. Gagne;Seth Guikema;Robert Hoffman;Branden B Johnson;Christina Kumler;John D. Lee;Anna Lowe;Amy McGovern;Vanessa Przybylo;Jacob T Radford;Emilie Roth;Carly Sutter;Philippe Tissot;Paul Roebber;Jebb Q. Stewart;Miranda C. White;John K. Williams
  • 通讯作者:
    John K. Williams
Power outage prediction using data streams: An adaptive ensemble learning approach with a feature‐ and performance‐based weighting mechanism
使用数据流进行断电预测:一种具有基于特征和性能的加权机制的自适应集成学习方法
  • DOI:
    10.1111/risa.14211
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Elnaz Kabir;Seth Guikema;S. Quiring
  • 通讯作者:
    S. Quiring

Seth Guikema的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seth Guikema', 18)}}的其他基金

CRISP Type 2/Collaborative Research: Coordinated, Behaviorally-Aware Recovery for Transportation and Power Disruptions (CBAR-tpd)
CRISP 类型 2/合作研究:针对交通和电力中断的协调、行为感知恢复 (CBAR-tpd)
  • 批准号:
    1638197
  • 财政年份:
    2017
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Standard Grant
Workshop/Collaborative Research: Interdisciplinary Methods for Disaster Research
研讨会/合作研究:灾害研究的跨学科方法
  • 批准号:
    1649879
  • 财政年份:
    2016
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Standard Grant
CAREER: Integrated Modeling of Sustainability and Reliability for Interdependent Infrastructure Systems
职业:相互依赖的基础设施系统的可持续性和可靠性集成建模
  • 批准号:
    1621116
  • 财政年份:
    2015
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Standard Grant
Hazards SEES Type 2: Modeling to Promote Regional Resilience to Repeated Heat Waves and Hurricanes
灾害 SEES 类型 2:建立模型以提高区域对反复出现的热浪和飓风的抵御能力
  • 批准号:
    1631409
  • 财政年份:
    2015
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Continuing Grant
A Sensitivity Approach to Assessing Model Uncertainty for Stochastic Systems
评估随机系统模型不确定性的灵敏度方法
  • 批准号:
    1542020
  • 财政年份:
    2015
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Standard Grant
Hazards SEES Type 2: Modeling to Promote Regional Resilience to Repeated Heat Waves and Hurricanes
灾害 SEES 类型 2:建立模型以提高区域对反复出现的热浪和飓风的抵御能力
  • 批准号:
    1331399
  • 财政年份:
    2013
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Continuing Grant
CAREER: Integrated Modeling of Sustainability and Reliability for Interdependent Infrastructure Systems
职业:相互依赖的基础设施系统的可持续性和可靠性集成建模
  • 批准号:
    1149460
  • 财政年份:
    2012
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Standard Grant
Drinking Water Distribution System Management Incorporating Health and Asset Risk
纳入健康和资产风险的饮用水分配系统管理
  • 批准号:
    1031046
  • 财政年份:
    2010
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Standard Grant

相似国自然基金

时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
  • 批准号:
    52377095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向网约平台的大规模农机协同调度优化研究
  • 批准号:
    72301036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于黎曼流体空间的大规模知识图谱感知推荐关键技术研究
  • 批准号:
    62376135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向大规模高维数据的高效相似性检索方法研究
  • 批准号:
    62302110
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于信息几何的超大规模MIMO传输理论方法研究
  • 批准号:
    62371125
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
RP4 LEAP
RP4飞跃
  • 批准号:
    10595904
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
  • 批准号:
    2239410
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Continuing Grant
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
  • 批准号:
    10679749
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
Atlas for neuronal and glial cell types selectively vulnerable to proteinopathies during progression of Alzheimer's Disease
在阿尔茨海默病进展过程中选择性易受蛋白质病影响的神经元和神经胶质细胞类型图谱
  • 批准号:
    10667245
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了