Collaborative Research: CSEDI--Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions

合作研究:CSEDI--深地条件下塑性变形实验研究的重大挑战

基本信息

  • 批准号:
    0968456
  • 负责人:
  • 金额:
    $ 49.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The main goal of this joint project is to further develop the experimental techniques of studying plastic deformation under deep Earth conditions. When a large force (stress) is applied to minerals or rocks under shallow Earth conditions, they will be deformed by brittle fracture. In the deep interior of Earth, temperature is higher and then plastic deformation becomes possible. This plastic deformation helps material circulation by convection that cools Earth and causes most of geological activities including mountain building and deep circulation of water and other materials. However, to date very little is known on the plastic flow properties of materials under deep Earth conditions due mainly to the technical difficulties. For example, in the deep interior of Earth, not only is temperature high, but also pressure is high. Usually pressure suppresses atomic motion and hence plastic deformation becomes difficult under high-pressure conditions. Does the role of pressure become more important than temperature and hence the viscosity of materials increases with depth? Also most of minerals undergo a series of phase transformations. How do these phase transformations affect the plastic properties? These issues are critical to our understanding of the dynamics and evolution of Earth and other terrestrial planets. Despite its importance, almost nothing was known about these deep earth deformation as recently as ~ten years ago. Recognizing this need, the investigators started a group effort to develop new techniques of plastic deformation under deep Earth conditions in 2002. Based on the studies during the previous funding periods, they have made major progress including the development of new types of deformation apparatus and the improvements to the stress (and strain) measurements using synchrotron x-ray sources. As a result, we can now conduct quantitative deformation experiments to ~20 GPa and ~2000 K. However, these conditions correspond only to the depth of ~500 km. Earth's mantle extends to ~2900 km. Also, there has been very poor control of water content in materials previously studied. In this new phase of technical development, the team of investigators will focus on (i) extending the maximum pressure to ~30 GPa and higher (~1000 km depth), (ii) improving the control of chemical environment (such as water fugacity) under high-pressure conditions, and (iii) improving the stress measurements through the use of new hardware and theory. These developments will allow investigation of the plastic properties of Earth materials to the conditions equivalent to the shallow part of the lower mantle under well-controlled chemical environment. Applications of these techniques will shed important new light into our understanding of dynamics of whole Earth. The project is a collaboration among teams at four institutions, and will provide enhanced infrastructure to the experimental geophysics community, including new facilities at national synchrotron beamlines that will be available to the broader community. The developments will include training and mentoring of graduate students and post doctoral scholars.
该联合项目的主要目标是进一步开发研究地球深层条件下塑性变形的实验技术。当地球浅层条件下的矿物或岩石受到较大的力(应力)时,它们会因脆性断裂而变形。在地球内部深处,温度较高,因此可以发生塑性变形。这种塑性变形有助于通过对流进行物质循环,从而冷却地球并引起大多数地质活动,包括造山以及水和其他物质的深层循环。 然而,迄今为止,主要由于技术困难,人们对地球深处条件下材料的塑性流动特性知之甚少。例如,在地球内部深处,不仅温度高,而且压力也高。通常压力会抑制原子运动,因此在高压条件下塑性变形变得困难。压力的作用是否变得比温度更重要,因此材料的粘度随着深度而增加?大多数矿物也会经历一系列的相变。这些相变如何影响塑料性能?这些问题对于我们理解地球和其他类地行星的动力学和演化至关重要。尽管它很重要,但直到大约十年前,人们对这些深层地球变形几乎一无所知。认识到这一需求,研究人员于2002年开始集体努力开发地球深处条件下的塑性变形新技术。基于之前资助期间的研究,他们取得了重大进展,包括开发新型变形装置和使用同步加速器 X 射线源改进应力(和应变)测量。因此,我们现在可以进行~20 GPa和~2000 K的定量变形实验。然而,这些条件仅对应于~500 km的深度。地幔延伸至~2900公里。此外,之前研究的材料中水含量的控制非常差。在这一新的技术开发阶段,研究团队将重点关注(i)将最大压力扩展到~30 GPa及更高(~1000 km深度),(ii)改善化学环境的控制(例如水逸度)在高压条件下,(iii)通过使用新的硬件和理论改进应力测量。这些进展将允许在良好控制的化学环境下研究相当于下地幔浅部的条件下的地球材料的塑性特性。这些技术的应用将为我们理解整个地球的动力学提供重要的新线索。 该项目是四个机构团队之间的合作,将为实验地球物理学界提供增强的基础设施,包括可供更广泛的社区使用的国家同步加速器束线的新设施。这些进展将包括对研究生和博士后学者的培训和指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanbin Wang其他文献

Possible Site Effects Revealed by Regional Earthquake Records in the Qaidam Basin, China
中国柴达木盆地区域地震记录揭示了可能的场地影响
  • DOI:
    10.1785/0220180095
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yanyang Chen;Yanbin Wang
  • 通讯作者:
    Yanbin Wang
Recent developments in computed tomography at GSECARS
GSECARS 计算机断层扫描的最新进展
  • DOI:
    10.1117/12.861393
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Rivers;D. Citron;Yanbin Wang
  • 通讯作者:
    Yanbin Wang
Bimetallic MOF-derived three-dimensional nanoflowers PdCoOx as peroxidase mimic activity for determining total antioxidant capacity.
双金属 MOF 衍生的三维纳米花 PdCoOx 作为过氧化物酶模拟活性,用于测定总抗氧化能力。
  • DOI:
    10.1016/j.foodchem.2024.140120
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Liling Wang;Yanbin Wang;Yifeng Zhou
  • 通讯作者:
    Yifeng Zhou
Crystal structure of 1-(3-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethanone O-benzyl oxime, C22H19BrN2O2
Dynamic Covalent Polymers: A New Class of Reactive Polymers Containing Reversibly Cleavable and Exchangeable Covalent Bonds
动态共价聚合物:含有可逆可裂解和可交换共价键的新型反应性聚合物
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanbin Wang;Hideo Ohkita;Hiroaki Benten;Shinzaburo Ito;Hideyuki Otsuka
  • 通讯作者:
    Hideyuki Otsuka

Yanbin Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanbin Wang', 18)}}的其他基金

Collaborative Research: Structure and properties of geofluids and their impact on fluid migration in subduction zones
合作研究:俯冲带地流体的结构和性质及其对流体运移的影响
  • 批准号:
    2246803
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: The Mechanics of Intermediate Depth Earthquakes: a Multiscale Investigation Combining Seismological Analyses, Laboratory Experiments, and Numerical Modeling
合作研究:中深度地震的力学:结合地震分析、实验室实验和数值模拟的多尺度研究
  • 批准号:
    1925920
  • 财政年份:
    2019
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Density and structure of s
合作研究:密度和结构
  • 批准号:
    1620548
  • 财政年份:
    2016
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
CSEDI合作研究:深地条件下塑性变形实验研究的巨大挑战
  • 批准号:
    1361276
  • 财政年份:
    2014
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Physical properties and structure of silicate melts and supercooled liquids at high pressures
合作研究:高压硅酸盐熔体和过冷液体的物理性质和结构
  • 批准号:
    1214376
  • 财政年份:
    2012
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Properties of Melts and Supercooled Liquids at High Pressure by In Situ X-ray Computed Tomography and Absorption
合作研究:通过原位 X 射线计算机断层扫描和吸收研究熔体和过冷液体在高压下的特性
  • 批准号:
    0711057
  • 财政年份:
    2008
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CSEDI--Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
合作研究:CSEDI--深地条件下塑性变形实验研究的重大挑战
  • 批准号:
    0652574
  • 财政年份:
    2007
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
High Pressure Synchrotron Radiology and Microtomography Studies of Mechanisms and Kinetics of Liquid Iron -Silicate Segregation: Implications for Formation of the Earth's Core
液态铁硅酸盐偏析机制和动力学的高压同步辐射学和显微断层扫描研究:对地核形成的影响
  • 批准号:
    0001088
  • 财政年份:
    2000
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
P-V-T Equations of State of Mantle Minerals
地幔矿物状态的 P-V-T 方程
  • 批准号:
    9526634
  • 财政年份:
    1996
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2154072
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153688
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153910
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054884
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054964
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了