CAREER: Dynamic Structure and Function of Biofilms for Wastewater Treatment
职业:废水处理生物膜的动态结构和功能
基本信息
- 批准号:0954918
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0954918NerenbergWater and wastewater systems currently consume 3% to 4% of all electrical energy production in the United States, and upgrading wastewater treatment (WWT) plants to achieve nitrogen removal may double their energy demands. Nitrogen removal also may substantially increase emissions of nitrous oxide (N2O), a potent greenhouse gas. Biofilm systems are increasingly popular for upgrades to nitrogen removal. A novel biofilm approach is the Hybrid Membrane-Biofilm Process (HMBP), where cassettes of air-filled membrane-supported biofilms (MBfs) are integrated into an activated sludge tank. This eliminates bubbled aeration, potentially saving over 50% of the electrical energy requirements for WWT, while achieving nitrogen removal and potentially minimizing N2O emissions. Biofilms are dynamic systems, where physical dynamics (e.g., detachment) and chemical dynamics (e.g., varying substrate concentrations) can have important effects on biofilm structure, function, and overall performance. The goal of this research is to investigate the dynamic structure and function of biofilms for WWT. The PI will develop a novel experimental approach that allows the study of physical and chemical dynamics of biofilm system using microsensors, bacteria tagged with a novel anaerobic fluorescent protein, and confocal laser scanning microscopy (CLSM). This allows near real-time analysis of the effects of detachment and shifts in substrate concentrations on the structure and function of biofilms. This technique will be used to study the effect of different modes of detachment (physical dynamic), and how this affects the structure and function of biofilms, especially as they relate to the HMBP process. The PI also will study N2O emissions in biofilms (chemical dynamic), and how they are affected by cycling of oxygen concentrations. Multi-dimensional, particle-based models will be developed to capture the dynamic effects. This research develops a novel approach to biofilm research. The results will provide a fundamental understanding of the effect of detachment on the structure, function, and overall performance of biofilms. It is the first systematic study of N2O formation in biofilms, and of the dynamic structure and function of biofilms. It uses a novel combination of bacteria tagged with anaerobic fluorescent proteins, CLSM, and microsensors. Finally, it also develops a novel, particle-based, multidimensional model suitable for capturing these dynamic effects on biofilms. The research will directly impact the understanding of detachment and N2O formation in biofilm systems relevant to WWT, including MBf-based applications. The proposed research platform can be used to study biofilms of clinical, industrial, and environmental relevance, such as biofilm viability after exposure to disinfectants, antibiotics, or heavy metals. The PI will focus on the training and education of Hispanic students to encourage them to pursue careers in science and engineering. High school teachers will be trained to use simple molecular tools and to develop teaching modules with assistance from high school students. A pilot undergraduate research exchange with Chile will be initiated as a means to provide an international research experience to undergraduate and graduate students. Graduate students also will be involved in international research collaborations. REU students will be recruited from Puerto Rico and local universities with large Hispanic populations
0954918当前消耗美国所有电能生产的3%至4%,以及升级废水处理(WWT)植物以实现氮的清除可能会使能源需求增加一倍。去除氮还可能大大增加一氧化二氮(N2O)的排放,这是一种有效的温室气体。生物膜系统越来越受欢迎,可以升级到去除氮。一种新型的生物膜方法是杂化膜双膜过程(HMBP),其中充气的膜支持的生物膜(MBF)集成到活化的污泥罐中。 这消除了气泡的曝气,有可能节省超过50%的WWT电能需求,同时实现氮去除并可能最大程度地减少N2O排放。 生物膜是动态系统,其中物理动力学(例如分离)和化学动力学(例如,底物浓度变化)可以对生物膜结构,功能和整体性能产生重要影响。这项研究的目的是研究WWT生物膜的动态结构和功能。 PI将开发一种新型的实验方法,该方法允许使用微传感器,用新型厌氧荧光蛋白标记的细菌以及共共聚焦激光扫描显微镜(CLSM)研究生物膜系统的物理和化学动力学。这允许几乎实时分析脱离和底物浓度对生物膜结构和功能的影响。该技术将用于研究不同脱离模式(物理动态)的影响,以及这如何影响生物膜的结构和功能,尤其是与HMBP过程相关时。 PI还将研究生物膜(化学动力学)中的N2O排放,以及它们如何受氧气浓度循环的影响。 将开发多维的基于粒子的模型来捕获动态效应。这项研究开发了一种新型生物膜研究方法。结果将提供对脱离对生物膜结构,功能和整体性能的影响的基本理解。 它是生物膜中N2O形成的首次系统研究,以及生物膜的动态结构和功能。它使用了用厌氧荧光蛋白,CLSM和微传感器标记的细菌组合。 最后,它还开发了一种新型的,基于粒子的多维模型,适合捕获对生物膜的这些动态影响。这项研究将直接影响与WWT相关的生物膜系统中的分离和N2O形成的理解,包括基于MBF的应用。拟议的研究平台可用于研究临床,工业和环境相关性的生物膜,例如暴露于消毒剂,抗生素或重金属后的生物膜生存能力。 PI将专注于西班牙裔学生的培训和教育,以鼓励他们从事科学和工程学的职业。 高中教师将接受培训,可以在高中生的帮助下使用简单的分子工具并开发教学模块。 将开始与智利的试验本科研究交流,作为为本科和研究生提供国际研究经验的一种手段。 研究生还将参与国际研究合作。 REU学生将从波多黎各和当地大学招募,其中西班牙裔人口众多
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Nerenberg其他文献
Robert Nerenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Nerenberg', 18)}}的其他基金
GOALI: Effect of Hydroxylamine on the Structure and Function of Nitrifying Biofilms
目标:羟胺对硝化生物膜结构和功能的影响
- 批准号:
1805406 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Workshop: The Mechanical Properties of Biofilms: State-of-the-Art and Research Needs, at University of Notre Dame in late July or early August of 2017
研讨会:生物膜的机械特性:最先进的技术和研究需求,于 2017 年 7 月下旬或 8 月初在圣母大学举行
- 批准号:
1632982 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
GOALI: Predicting Biofilm Deformation and Detachment Using In-Situ Micro-Rheology and Phase-Field Modeling
GOALI:利用原位微流变学和相场建模预测生物膜变形和脱离
- 批准号:
1605177 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SGER: Hollow-Fiber Membrane Microbial Fuel Cells (HFM-MFCs) for Electricity Production from Wastewater
SGER:用于废水发电的中空纤维膜微生物燃料电池(HFM-MFC)
- 批准号:
0723003 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向双结构光系统中的多路径效应理论研究及其实时动态三维重建
- 批准号:52305561
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于双重动态键交联结构的自修复、可回收、本征阻燃碳纤维增强环氧复合材料的制备及陶瓷化阻燃机理研究
- 批准号:22375195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多源动态扩散驱动的结构化图学习理论与方法
- 批准号:62376146
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于核磁共振与化学交联质谱整合的蛋白质动态结构表征新方法
- 批准号:22374154
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Dynamic dissection of how transcription and loop extrusion regulate 3D genome structure
职业:动态剖析转录和环挤出如何调节 3D 基因组结构
- 批准号:
2337728 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
- 批准号:
10723977 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Detecting Adolescent Suicidality Biometric Signals and Dynamic Variability with Wearable Technology
利用可穿戴技术检测青少年自杀生物特征信号和动态变异性
- 批准号:
10731651 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
- 批准号:
10594266 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
- 批准号:
10572855 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: