CAREER: MilliKelvin Magnetic Field-Angle-Resolved Probe of Quantum Materials

职业:量子材料的毫开尔文磁场角分辨探针

基本信息

  • 批准号:
    0952716
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-01 至 2015-04-30
  • 项目状态:
    已结题

项目摘要

****NON-TECHNICAL ABSTRACT****The anisotropy of physical properties is a key distinguishing feature of crystalline systems, is central to the nature of fundamental interactions and their resultant phases, and is known to play a key role in stabilizing many exotic phases of matter such as high-temperature superconductivity. Motivated by the recent discovery of a new family of iron-based superconductors with intriguing fundamental properties and much promise for technological applications, this Faculty Early Career Award supports a program with a goal of developing an experimental platform capable of probing the symmetry and anisotropic nature of quantum materials by measuring heat capacity and other thermal properties in large fully rotatable magnetic fields and at temperatures approaching absolute zero. By providing a new experimental tool previously unavailable to the U.S. condensed matter physics community, several fundamental questions regarding the nature of high-temperature superconductivity and other exotic states of matter can now be addressed. This provides an opportunity for investigation of a wide range of materials of interest to both fundamental and applied research in physics, chemistry, materials science and other disciplines, and with promise for applications in energy and health-related fields. An important component of this CAREER research program is the integration of an extended education program that will include the participation of both undergraduate students through co-operative work-study programs and local-area high school students through Science Magnet Programs. Also, an international junior researcher short-visit exchange program will be organized to enhance the experience of undergraduate students, graduate students and postdoctoral scholars working on collaborative projects.****TECHNICAL ABSTRACT****This Faculty Early Career Award supports a project seeking to elucidate the fundamental nature of unconventional superconductivity and the ground state properties of quantum critical systems via experimentally accessible methods of quantum tuning. The key approach is to develop an experimental platform capable of probing the symmetry and anisotropic nature of quantum materials by performing thermal transport and thermodynamic measurements down to milliKelvin temperatures in a rotatable vector magnetic field environment. With precise angular control of large, directional magnetic fields at low temperatures, specific heat and thermal conductivity probes will be used to a) map the symmetry of superconducting order parameters in iron-based and heavy-fermion superconductors, and b) investigate the role of anisotropy in quantum critical systems by measuring straightforward, interpretation-independent quantities to test the basic nature of particle excitations. An important component of this research program is the integration of an extended education program that will include the participation of both undergraduate students through co-operative work-study programs and local-area high school students through Science Magnet Programs. Also, an international junior researcher short-visit exchange program will be organized to enhance the experience of undergraduate students, graduate students and postdoctoral scholars working on collaborative projects.
****非技术摘要****物理性质的各向异性是晶体系统的一个关键区别特征,是基本相互作用及其所得相的性质的核心,并且已知在稳定许多物质方面发挥着关键作用。物质的奇异相,例如高温超导。受最近发现的一个新的铁基超导体家族的激励,该家族具有令人着迷的基本特性和对技术应用的巨大前景,该学院早期职业奖支持一个项目,其目标是开发一个能够探测铁基超导体的对称性和各向异性性质的实验平台。通过测量大的完全可旋转磁场和接近绝对零的温度下的热容量和其他热特性来研究量子材料。通过为美国凝聚态物理界提供以前无法获得的新实验工具,有关高温超导性质和其他奇异物质态的几个基本问​​题现在可以得到解决。这为研究物理、化学、材料科学和其他学科的基础和应用研究感兴趣的各种材料提供了机会,并有望在能源和健康相关领域得到应用。该职业研究计划的一个重要组成部分是扩展教育计划的整合,其中包括本科生通过合作勤工俭学计划的参与和当地高中生通过科学磁铁计划的参与。此外,还将组织国际初级研究员短期访问交流计划,以增强本科生、研究生和博士后学者从事合作项目的经验。****技术摘要****该教师早期职业奖支持一个项目寻求通过实验上可行的量子调谐方法来阐明非常规超导性的基本性质和量子临界系统的基态特性。关键方法是开发一个实验平台,能够通过在可旋转矢量磁场环境中进行低至毫开尔文温度的热传输和热力学测量来探测量子材料的对称性和各向异性性质。通过在低温下对大的定向磁场进行精确的角度控制,比热和导热系数探针将用于a)绘制铁基和重费米子超导体中超导有序参数的对称性,b)研究通过测量直接的、与解释无关的量来测试粒子激发的基本性质,从而研究量子临界系统中的各向异性。该研究计划的一个重要组成部分是扩展教育计划的整合,其中包括本科生通过合作勤工俭学计划的参与和当地高中生通过科学磁铁计划的参与。此外,还将组织国际初级研究员短期访问交流项目,以增强本科生、研究生和博士后学者从事合作项目的经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Johnpierre Paglione其他文献

Charge order evolution of superconducting <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>BaNi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>As</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> under high pressure
超导电荷序演化 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>BaNi</mml
  • DOI:
    10.1103/physrevb.108.205103
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. Collini;D. J. Campbell;D. Sneed;Prathum Saraf;C. Eckberg;J. Jeffries;N. Butch;Johnpierre Paglione
  • 通讯作者:
    Johnpierre Paglione

Johnpierre Paglione的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Johnpierre Paglione', 18)}}的其他基金

Nematic Enhancement of Superconductivity
超导性的向列增强
  • 批准号:
    2303090
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Fundamentals of Quantum Materials Winter School and Workshop
量子材料基础冬季学校和研讨会
  • 批准号:
    2310428
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Fundamentals of Quantum Materials Winter School and Workshop
量子材料基础冬季学校和研讨会
  • 批准号:
    2013688
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Nematic Enhancement of Superconductivity
超导性的向列增强
  • 批准号:
    1905891
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Enabling Braiding and Fusing of Majoranas Workshop
启用Majoranas Workshop的编织和融合
  • 批准号:
    1938544
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Fundamentals of Quantum Materials Winter School and Workshop
量子材料基础冬季学校和研讨会
  • 批准号:
    1911997
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Spin Fluctuations at Exposed Quantum Critical Points
暴露量子临界点处的自旋涨落
  • 批准号:
    1610349
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

MilliKelvin Experiments Utilising Vector Magnetic Field
利用矢量磁场的毫开尔文实验
  • 批准号:
    EP/K040359/1
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
A Scanning Hall Probe Microscope for High Resolution milliKelvin Magnetic Imaging
用于高分辨率毫开尔文磁成像的扫描霍尔探针显微镜
  • 批准号:
    EP/D034264/1
  • 财政年份:
    2006
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Magnetic Interactions in Mesoscopic Transport Studied by Millikelvin Scanning Probe Microscopy
米利开尔文扫描探针显微镜研究介观输运中的磁相互作用
  • 批准号:
    0196382
  • 财政年份:
    2001
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Magnetic Interactions in Mesoscopic Transport Studied by Millikelvin Scanning Probe Microscopy
米利开尔文扫描探针显微镜研究介观输运中的磁相互作用
  • 批准号:
    9623847
  • 财政年份:
    1996
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Millikelvin Studies of Solid Helium-3 Magnetic Effects and Superconducting Amorphous Transition Metals
固体氦3磁效应和超导非晶过渡金属的米开尔文研究
  • 批准号:
    8011384
  • 财政年份:
    1980
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了