Influence of diameter and chirality of single-walled carbon nanotubes on their fate and effects in the aquatic environment

单壁碳纳米管的直径和手性对其在水生环境中的命运和影响的影响

基本信息

  • 批准号:
    0933484
  • 负责人:
  • 金额:
    $ 39.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

0933484SalehSingle-walled carbon nanotubes (SWNTs) have emerged as high-performance nanomaterials with numerous applications, including electronic, optical, medical, and structural composite technologies. Because of their anticipated role in large-scale industrial production, there is little doubt that SWNTs will ultimately find their way into our aquatic environment. The unusual physicochemical characteristics of SWNTs compared to other nanoparticles -- particularly their very large aspect ratio and complex colloidal behavior (e.g. aggregation) in aqueous solutions -- preclude meaningful theoretical predictions of their colloidal stability and transport behavior. Furthermore, there is a complete lack of fundamental studies on the effects of SWNT structural properties (e.g. diameter and electronic structure) on their fate, transport and biological interactions in aquatic systems. Consequently, there exist no reliable methods to predict the fate and implications of SWNTs in natural aquatic environments based on measurable physical properties of these nanomaterials. The purpose of this proposal is to fundamentally understand the effect of structural properties of SWNTs on their fate and biological behavior in the natural aquatic environment. The study design involves systematic evaluation of aggregation, deposition, organic compound sorption, and uptake/toxicity in fish (Japanese medaka) for semiconductive SWNTs for a range of electronic structures (with consequent variation in diameter and chirality). These studies will be fully novel, as there are no fundamental studies reported in the literature examining the effect of basic structural properties on environmental fate and implications of SWNTs. The research proposed will address the following aims. (1) Fractionation of semiconductive SWNTs by diameter/chirality using density gradient ultracentrifugation; (2) examination of aggregation and deposition kinetics of diameter/chirality-sorted SWNT fractions as a function of organic matter concentration and ionic strength using state-of-the-art dynamic light scattering, quartz crystal microbalance, and conventional column-flow transport experiments; (3) determination of the effect of SWNT diameter/chirality on organic contaminant adsorption using common headspace-partitioning methods; and (4) assessment of the uptake, bio-distribution, and toxic effects of diameter/chirality-sorted SWNTs in Japanese medaka fish after waterborne- or dietary exposure using near-IR fluorescence spectroscopy and microscopy. The proposed research will fill a critical gap in the scientific literature by providing a systematic understanding of the effects of structural properties on SWNT fate, transport and biological behavior. Results of this study may lead to structure-property relations for SWNTs in aquatic environments, allowing a priori predictions of their fate, transport and effects and therefore meets the definition set forth by the NSF for transformative research. The expected research outcomes and benefits include implementation of techniques to systematically separate chiral SWNTs; a complete understanding of the effects of electronic structure on colloidal stability, deposition, and sorptive properties; role of SWNT electronic structure on biological uptake and toxic effects; and finally an increased knowledge-base on the influence of surface structure on the behavior and effects of nanomaterials in the aquatic environment. This increase in basic scientific understanding will ultimately lead to structure-activity relationships from which we may build strategies to assess risks of nanomaterials in the ambient environment, as is currently possible for molecular environmental contaminants. The proposed activity will generate critical knowledge to better understand the environmental implication of a commercially important class of nanomaterial. The majority of requested funds are directed toward the training of doctoral students in an emerging and interdisciplinary research topic. This research will lead to discovery and understanding through teaching and exploration. It provides for student education, mentoring, and research in a novel and highly relevant area that is of immediate and critical importance to our society. This project has potential to involve minority students through student exchange activities with two minority institutions. Dissemination of the research results is planned through conference presentations and peer-reviewed publications.
0933484Saleh 单壁碳纳米管 (SWNT) 已成为具有多种应用的高性能纳米材料,包括电子、光学、医疗和结构复合技术。由于它们在大规模工业生产中的预期作用,毫无疑问,单壁碳纳米管最终将进入我们的水生环境。与其他纳米粒子相比,单壁碳纳米管具有不寻常的物理化学特性,特别是它们在水溶液中的非常大的长宽比和复杂的胶体行为(例如聚集),妨碍了对其胶体稳定性和传输行为进行有意义的理论预测。此外,完全缺乏关于单壁碳纳米管结构特性(例如直径和电子结构)对其在水生系统中的命运、运输和生物相互作用的影响的基础研究。因此,没有可靠的方法可以根据这些纳米材料的可测量物理特性来预测单壁碳纳米管在自然水生环境中的命运和影响。该提案的目的是从根本上了解单壁碳纳米管的结构特性对其在自然水生环境中的命运和生物行为的影响。研究设计涉及对一系列电子结构(随之而来的直径和手性变化)的半导体单壁碳纳米管的聚集、沉积、有机化合物吸附和鱼类(日本青鳉)的吸收/毒性进行系统评估。这些研究将是完全新颖的,因为文献中没有报道检验基本结构特性对环境命运的影响以及单壁碳纳米管的影响的基础研究。拟议的研究将实现以下目标。 (1) 使用密度梯度超速离心按直径/手性对半导体单壁碳纳米管进行分级; (2) 使用最先进的动态光散射、石英晶体微天平和传统的柱流传输实验,检查直径/手性排序的 SWNT 部分的聚集和沉积动力学作为有机物浓度和离子强度的函数; (3) 使用常见的顶空分配方法测定单壁碳纳米管直径/手性对有机污染物吸附的影响; (4) 使用近红外荧光光谱和显微镜评估日本青鳉鱼在水源或饮食暴露后直径/手性排序的单壁碳纳米管的吸收、生物分布和毒性作用。拟议的研究将通过系统地了解结构特性对单壁碳纳米管命运、运输和生物行为的影响,填补科学文献中的一个关键空白。这项研究的结果可能会导致水生环境中单壁碳纳米管的结构-性质关系,从而可以预先预测它们的命运、运输和影响,从而满足 NSF 为变革性研究提出的定义。预期的研究成果和效益包括实施系统分离手性单壁碳纳米管的技术;全面了解电子结构对胶体稳定性、沉积和吸附特性的影响; SWNT电子结构对生物吸收和毒性作用的作用;最后,增加关于表面结构对纳米材料在水生环境中的行为和影响的影响的知识库。基础科学认识的增加最终将导致结构-活性关系,我们可以根据这种关系制定策略来评估周围环境中纳米材料的风险,就像目前对于分子环境污染物而言可能的那样。拟议的活动将产生关键知识,以更好地理解一类具有重要商业意义的纳米材料对环境的影响。大部分申请的资金用于培训博士生的新兴跨学科研究课题。这项研究将通过教学和探索带来发现和理解。它在一个新颖且高度相关的领域提供学生教育、指导和研究,这对我们的社会具有直接和至关重要的意义。该项目有潜力通过与两个少数民族院校的学生交流活动吸引少数民族学生参与。研究成果的传播计划通过会议演讲和同行评审出版物进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Navid Saleh其他文献

Role of biopolymers in enhancing multiscale characteristics of carbonation-cured cementitious composites
生物聚合物在增强碳化固化水泥基复合材料多尺度特性中的作用
  • DOI:
    10.1016/j.cemconcomp.2022.104766
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    Rakibul I. Khan;Muhammad Intesarul Haque;W. Ashraf;Surendra P. Shah;Navid Saleh
  • 通讯作者:
    Navid Saleh
In situremediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials
  • DOI:
    10.1039/c9en00143c
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tong Zhang;Gregory V. Lowry;Natalie L. Capiro;Jianmin Chen;Wei Chen;Yongsheng Chen;Dionysios D. Dionysiou;Daniel W. Elliott;Subhasis Ghoshal;Thilo Hofmann;Heileen Hsu-Kim;Joseph Hughes;Chuanjia Jiang;Guibin Jiang;Chuanyong Jing;Michael Kavanaugh;Qilin Li;Sijin Liu;Jie Ma;Bingcai Pan;Tanapon Phenrat;Xiaolei Qu;Xie Quan;Navid Saleh;Peter J. Vikesland;Qiuquan Wang;Paul Westerhoff;Michael S. Wong;Tian Xia;Baoshan Xing;Bing Yan;Lunliang Zhang;Dongmei Zhou;Pedro J. J. Alvarez
  • 通讯作者:
    Pedro J. J. Alvarez

Navid Saleh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Navid Saleh', 18)}}的其他基金

NNA Track 1: Collaborative Research: A Purpose-Driven Merger of Western Science and Indigenous Knowledge of Water Quality in Alaskan Communities
NNA 轨道 1:合作研究:西方科学与阿拉斯加社区水质知识的有目的的融合
  • 批准号:
    2022670
  • 财政年份:
    2020
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Transforming passive protective face masks toward active capture and inactivation of coronavirus with nano-assisted surfactant modification
RAPID:合作研究:通过纳米辅助表面活性剂改性,将被动防护口罩转变为主动捕获和灭活冠状病毒
  • 批准号:
    2028521
  • 财政年份:
    2020
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant
Inactivation of Legionella pneumophila harbored by amoebae using a nano-enabled alternative technology: Application and outreach to the Colonias in Texas
使用纳米替代技术灭活阿米巴虫所携带的嗜肺军团菌:在德克萨斯州殖民地的应用和推广
  • 批准号:
    1805958
  • 财政年份:
    2018
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Interaction of carbon-metal nanohybrids at environmental interfaces
合作研究:EAGER:碳-金属纳米杂化物在环境界面的相互作用
  • 批准号:
    1602273
  • 财政年份:
    2016
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant
UNS: Role of dopant concentration and distribution in the environmental behavior of indium tin oxide nanoparticles
UNS:掺杂剂浓度和分布在氧化铟锡纳米粒子环境行为中的作用
  • 批准号:
    1511826
  • 财政年份:
    2015
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant
NUE: Sustainable Nanotechnology Education for Undergraduate Engineering Students
NUE:工程本科生的可持续纳米技术教育
  • 批准号:
    1445960
  • 财政年份:
    2014
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Fate, Transport, and Organismal Uptake of Rod-Shaped Nanomaterials
合作研究:棒状纳米材料的命运、运输和生物摄取
  • 批准号:
    1440261
  • 财政年份:
    2014
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Fate, Transport, and Organismal Uptake of Rod-Shaped Nanomaterials
合作研究:棒状纳米材料的命运、运输和生物摄取
  • 批准号:
    1335926
  • 财政年份:
    2013
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant

相似国自然基金

双直径微球阵列-电纺纤维复合结构力电响应规律研究
  • 批准号:
    52305507
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
悬索桥大直径主缆扭转和弯曲刚度解析模型及找形理论
  • 批准号:
    52378138
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
长距离大直径盾构隧道刮刀磨损规律及换刀时机预测研究
  • 批准号:
    52308415
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
台风环境海上风电大直径单桩基础灾变动态演化机理研究
  • 批准号:
    52308363
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
刷式密封流热固耦合诱发刷丝束非均布机理和增强封严性能变直径刷丝设计方法研究
  • 批准号:
    52376029
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Study on changes in dorsal vein vascular diameter depending on external temperature
背静脉血管直径随外界温度变化的研究
  • 批准号:
    19K09330
  • 财政年份:
    2019
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improvement of the patency rate for a small diameter vascular garft using Diamond-like-carbon coating
使用类金刚石碳涂层提高小直径血管移植物的通畅率
  • 批准号:
    18K08733
  • 财政年份:
    2018
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the flow elasticity phenomena of multiple vertically placed large diameter bore pipes under the current.
多根垂直放置大口径管道水流下流动弹性现象研究
  • 批准号:
    17H03500
  • 财政年份:
    2017
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multiscale modeling of synthesis of thin film of diameter- and chirality-controlled carbon nanotubes
直径和手性控制碳纳米管薄膜合成的多尺度建模
  • 批准号:
    24686026
  • 财政年份:
    2012
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Collaborative Research: Diameter and Chirality Control and Regrowth of Single-Walled Carbon Nanotubes
合作研究:单壁碳纳米管的直径和手性控制以及再生
  • 批准号:
    0828771
  • 财政年份:
    2008
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了