First Principles Design of Ionomers for Facile Ion Transport
方便离子传输的离聚物的第一原理设计
基本信息
- 批准号:0933391
- 负责人:
- 金额:$ 30.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0933391ColbyCurrent lithium batteries use a nanoporous polypropylene membrane filled with lithium salts dissolved in high dielectric constant solvents as the separator between electrodes. This technology has problems with safety and regardless of the choice of anion, which moves 5-10X faster than Li+, resulting in anion build-up at electrodes that significantly reduces battery efficiency, maximum battery power and recharge time. The obvious choice for a replacement membrane is a single-ion conducting polymer (ionomer) that has all anions covalently bonded to the polymer, has no solvent to leak out of the battery and can easily be made into a thin film. Unfortunately, the best ionomer membranes have Li+ ion conductivities 100X too small for practical applications. The PI leads a five-PI DOE-funded team that is attempting to design superior ionomers for lithium battery membranes, but also is facing a very broad design space, with 30 polar groups that could be added as side chains and 20 anions that could be attached to polymers. Combined with at least five backbones that have low Tg, there are thousands of possible combinations. Furthermore, he is a co-PI on a seven-PI Army MURI aiming to synthesize ionomer membranes for actuators, which additionally have flexibility in the choice of cation. The intellectual merits of this research are two-fold: (1) The proposed research will suggest anion, polar side group, backbone combinations worthy of synthesis and directly aid the seven synthesis students on the two teams mentioned above. (2) Ab initio calculations can be rapidly applied to a wide variety of anions and cations in different polar media, enabling a detailed understanding of ion interactions and solvation by polar groups, which should propel our modeling efforts with Sanat Kumar at Columbia. The broader impacts of our proposed research are three-fold. (1) The understanding of how to design ionomers for improved ion-conduction will not only impact advanced lithium batteries and actuators, but is also vital for other battery membranes (such as commercial ones transporting F-) and the membrane electrode assemblies for fuel cells. All ion-conducting membranes suffer from the fact that only a tiny fraction of counter-ions participate in conduction, and the proposed research directly addresses boosting the conducting ion content. (2) Materials development in the energy field is expected to play a very important role in the future of the United States economy and way of life. (3) Graduate students trained in this "energy materials" arena will be in enormous demand in both US industry and academia for at least the next ten years. Penn State has superb undergraduates and research motivates them to attend graduate school (15 of 25 undergraduate researchers in the PI's group over the past 14 years have gone on to graduate school in science and engineering) with many current undergraduates interested in "energy materials", including current REU-funded student Daniel King, a Materials Science and Engineering junior who has won our department's Undergraduate Research Fellowship for three consecutive years.
0933391电流锂电池使用一种纳米多孔聚丙烯膜,该膜充满锂盐,溶解在高介电恒定溶剂中,作为电极之间的分离器。该技术在安全性方面存在问题,无论选择如何选择阴离子,它的移动速度比Li+快5-10倍,从而导致电极在电极上堆积,从而大大降低了电池效率,最大电池电量和充电时间。替换膜的明显选择是单离子导电聚合物(Ionomer),其所有阴离子都共价粘结到聚合物与聚合物,没有溶剂从电池中泄漏,并且可以轻松地将其制成薄膜。不幸的是,最好的离子膜具有Li+离子电导率100倍,用于实际应用。 PI领导了一支由五pi的DOE资助的团队,该团队正在尝试为锂电池膜设计出色的离子体,但也面临着一个非常广阔的设计空间,可以将30个极性组添加为侧链和20个阴离子,可以是20个阴离子附着于聚合物。结合至少五个TG低的骨干,有数千种可能的组合。此外,他是一名七杆军队Muri的副驾驶,目的是将电离膜构成执行器的离子膜,此外,它在选择阳离子方面具有灵活性。 这项研究的智力优点是两个方面:(1)拟议的研究将暗示阴离子,极地小组,值得综合的骨干组合,并直接在上述两个团队中帮助七个合成学生。 (2)从头开始计算可以迅速应用于不同极地培养基中的各种阴离子和阳离子,从而使极地群体对离子相互作用和溶剂化有了详细的了解,这应该推动我们与哥伦比亚Sanat Kumar的建模工作。我们拟议的研究的更广泛影响是三倍。 (1)理解如何设计电离器以改进离子传导不仅会影响高级锂电池和执行器,而且对于其他电池膜(例如运输F-的商业膜)和燃料电池的膜电极组件至关重要。所有离子传导膜都遭受这样的事实,即只有一小部分反国参与传导,而拟议的研究直接解决了促进导电含量的促进。 (2)预计能源领域的材料发展将在美国的经济和生活方式的未来中发挥非常重要的作用。 (3)至少在接下来的十年中,接受了“能源材料”竞技场培训的研究生将在美国行业和学术界都有巨大的需求。宾夕法尼亚州立大学(Penn State)拥有一流的本科生,研究激励他们上研究生院(过去14年中,PI小组的25名本科研究人员中有15年中有许多目前对“能量材料”的本科生,包括现任REU资助的学生丹尼尔·金(Daniel King),这是一名材料科学和工程大三学生,连续三年赢得了我们部门的本科研究奖学金。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Colby其他文献
Ralph Colby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Colby', 18)}}的其他基金
Collaborative Research: Robust General Methods for Determination of Polyelectrolyte Molecular Weight and Polydispersity
合作研究:测定聚电解质分子量和多分散性的稳健通用方法
- 批准号:
2203746 - 财政年份:2022
- 资助金额:
$ 30.35万 - 项目类别:
Standard Grant
Fundamental Studies of Flow-Induced Polymer Crystallization
流动诱导聚合物结晶的基础研究
- 批准号:
2218775 - 财政年份:2022
- 资助金额:
$ 30.35万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Basis for General Molecular Weight Determination for Ionic Polymers
合作研究:离子聚合物通用分子量测定的基础
- 批准号:
1904852 - 财政年份:2019
- 资助金额:
$ 30.35万 - 项目类别:
Standard Grant
Energy materials based on single-ion conducting polymers mixed with zwitterions
基于与两性离子混合的单离子导电聚合物的能源材料
- 批准号:
1807934 - 财政年份:2018
- 资助金额:
$ 30.35万 - 项目类别:
Standard Grant
SusChEM: Rheology of Cellulose and other Biopolymers in Ionic Liquids
SusChEM:离子液体中纤维素和其他生物聚合物的流变学
- 批准号:
1506589 - 财政年份:2015
- 资助金额:
$ 30.35万 - 项目类别:
Standard Grant
Conduction and Mechanical Properties of Single-Ion Conducting Ionomers
单离子导电离聚物的导电和机械性能
- 批准号:
1404586 - 财政年份:2014
- 资助金额:
$ 30.35万 - 项目类别:
Continuing Grant
Collaborative: Viscoelasticity of Nanoparticle Dispersed Polymer Melts: Experiment and Simulation
协作:纳米颗粒分散聚合物熔体的粘弹性:实验与模拟
- 批准号:
1006659 - 财政年份:2010
- 资助金额:
$ 30.35万 - 项目类别:
Continuing Grant
Controlling Rheology by Tuning Colloidal Interactions
通过调节胶体相互作用来控制流变
- 批准号:
1033851 - 财政年份:2010
- 资助金额:
$ 30.35万 - 项目类别:
Standard Grant
Colloidal Polymer Chains: Construction, Statics and Dynamics
胶体聚合物链:结构、静力学和动力学
- 批准号:
0730780 - 财政年份:2007
- 资助金额:
$ 30.35万 - 项目类别:
Continuing Grant
Collaborative: The Polyelectrolyte-Ionomer Transition in Polymers
合作:聚合物中的聚电解质-离聚物转变
- 批准号:
0705745 - 财政年份:2007
- 资助金额:
$ 30.35万 - 项目类别:
Continuing Grant
相似国自然基金
毕赤酵母萜类合成模块化快速原型及设计原则
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
镁合金高效缓蚀剂作用机制及设计原则
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
新型马氏体耐热钢焊材设计原则及焊接接头高温性能调控
- 批准号:
- 批准年份:2019
- 资助金额:320 万元
- 项目类别:联合基金项目
中国近代钢筋混凝土建筑保护技术研究
- 批准号:51778123
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
因析设计的一般最小低阶混杂构造理论及应用
- 批准号:11661076
- 批准年份:2016
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
First-principles design of atomic defects for quantum technologies
量子技术原子缺陷的第一性原理设计
- 批准号:
DE220101147 - 财政年份:2023
- 资助金额:
$ 30.35万 - 项目类别:
Discovery Early Career Researcher Award
First-principles design of low-dimensional perovskites for white light emission
白光低维钙钛矿的第一性原理设计
- 批准号:
23KF0030 - 财政年份:2023
- 资助金额:
$ 30.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Uncovering the origin and theoretical design of shape memory alloys by machine learning and first-principles calculations
通过机器学习和第一性原理计算揭示形状记忆合金的起源和理论设计
- 批准号:
23K04422 - 财政年份:2023
- 资助金额:
$ 30.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Material design for beta titanium alloys based on first-principles calculations and machine learning
基于第一性原理计算和机器学习的β钛合金材料设计
- 批准号:
23K04417 - 财政年份:2023
- 资助金额:
$ 30.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
First-principles design of spin conversion materials by nanostructure prediction
通过纳米结构预测第一性原理设计自旋转换材料
- 批准号:
22K04862 - 财政年份:2022
- 资助金额:
$ 30.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)