Toward More Reliable Mobility: Improved Decision Support Tools for Transportation Systems

迈向更可靠的移动:改进的交通系统决策支持工具

基本信息

  • 批准号:
    0928577
  • 负责人:
  • 金额:
    $ 53.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

This project aims to integrate travel reliability into transportation network analysis methods by developing a coherent theoretical and methodological framework for representing travel reliability in network models, incorporating it in network routing and assignment formulations, and devising associated solution algorithms. Several fundamental issues in transportation system analysis under uncertainty will be addressed. First, the research team will apply the concept of stochastic dominance, a well-developed theory in economics and finance, to model heterogeneous risk-taking behavior in route choice, which promises to clarify the connections among different risk-modeling tools and to establish a more unified approach to model risk-taking behavior in route choice. Secondly, theoretically-justified and observationally-validated stochastic performance models will be developed to describe and predict travel time distributions. In particular, novel routing algorithms will be designed to compute and rank travel time distributions on a priori routes. Thirdly, the project will create novel network models capable of assessing travel reliability and evaluating its impacts at multiple levels of decision-making. Finally, the research will shed light on how the travel reliability information provision and traffic dynamics can be incorporated in reliability-based network models. Case studies constructed using real data will be conducted to assess how these new models can be used to predict future system performance, thereby supporting planning and operations decisions sensitive to travel reliability. Urban transportation systems are affected by uncertainties of various sorts, such as accidents, extreme weather, man-made disasters, special events and random travel and activity behavior. Taken individually or in combination, these factors could adversely affect and perturb the quality of transportation services. In particular, travel behavior researchers have established that unanticipated long delays on highways typically produce much worse frustration among motorists than "predictable" ones. Integrating travel reliability into transportation network analysis methods thus presents a pressing challenge that has motivated this research. Modeling tools produced under this project are able to account for unreliability of travel times, its effect on how travelers make travel decisions (route, departure time, mode, etc.), and the implications for overall performance and service quality of transportation infrastructure. Ultimately, the research will contribute to enhanced urban mobility and better quality of life, through better time use and more efficient activity participation and scheduling. The results from this research will be integrated into teaching through different forms (curriculum development, teaching tools, case studies, etc.) and thereby contribute to the training of future transportation workforce. Through this project, a web-based application of reliable route guidance will be developed and made available to other researchers and the general public. Potentially, this tool will benefit numerous motorists and freight and increase the public awareness on travel reliability issues.
该项目旨在通过开发一个连贯的理论和方法框架来表示网络模型中的出行可靠性,将其纳入网络路由和分配公式中,并设计相关的解决算法,从而将出行可靠性整合到交通网络分析方法中。 不确定性下交通系统分析的几个基本问​​题将得到解决。首先,研究团队将应用经济和金融领域成熟的随机优势理论的概念,对路径选择中的异质风险承担行为进行建模,这有望澄清不同风险建模工具之间的联系,并建立一个模型更统一的方法来模拟路线选择中的冒险行为。 其次,将开发经过理论验证和观察验证的随机性能模型来描述和预测旅行时间分布。 特别是,新颖的路线算法将被设计来计算和排序先验路线上的旅行时间分布。 第三,该项目将创建新颖的网络模型,能够评估旅行可靠性并评估其在多个决策层面的影响。 最后,该研究将阐明如何将出行可靠性信息提供和交通动态纳入基于可靠性的网络模型中。 将使用真实数据构建案例研究,以评估如何使用这些新模型来预测未来的系统性能,从而支持对旅行可靠性敏感的规划和运营决策。城市交通系统受到各种不确定性的影响,例如事故、极端天气、人为灾害、特殊事件以及随机出行和活动行为。这些因素单独或综合起来可能会对运输服务的质量产生不利影响和干扰。 特别是,出行行为研究人员发现,高速公路上意外的长时间延误通常会比“可预测的”延误给驾车者带来更严重的挫败感。 因此,将出行可靠性整合到交通网络分析方法中提出了紧迫的挑战,这也推动了这项研究。 该项目下生成的建模工具能够解释旅行时间的不可靠性、其对旅行者如何做出旅行决策(路线、出发时间、模式等)的影响,以及对交通基础设施整体性能和服务质量的影响。最终,该研究将通过更好的时间利用和更有效的活动参与和安排,有助于增强城市流动性和提高生活质量。这项研究的成果将通过不同的形式(课程开发、教学工具、案例研究等)融入到教学中,从而为未来交通劳动力的培训做出贡献。通过该项目,将开发基于网络的可靠路线引导应用程序,并将其提供给其他研究人员和公众。该工具有可能使众多驾车者和货运人员受益,并提高公众对出行可靠性问题的认识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Nie其他文献

Lowering systolic blood pressure to less than 120 mm Hg versus less than 140 mm Hg in patients with high cardiovascular risk with and without diabetes or previous stroke: an open-label, blinded-outcome, randomised trial
将患有或不患有糖尿病或既往中风的心血管高风险患者的收缩压降低至 120 mm Hg 以下与低于 140 mm Hg:一项开放标签、盲法结果、随机试验
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiamin Liu;Yan Li;Jinzhuo Ge;Xiaofang Yan;Haibo Zhang;Xin Zheng;Jiapeng Lu;Xi Li;Yan Gao;Lubi Lei;Jing Liu;Jing Li;Xinyue Ai;Chun An;Yuhong An;Shiru Bai;Xueke Bai;Jingao Bi;Xiaoling Bin;Miaomiao Bu;Peili Bu;Wei Bu;Lvping Cai;Nana Cai;Shuhui Cai;Ting Cai;Wenjing Cai;Bingbing Cao;Bingbing Cao;Huaping Cao;Libo Cao;Xiancun Cao;Hui Chai;Yonggui Chai;Zhiyong Chai;Chunduo Chang;Jianbao Chang;Shuyue Chang;Yunling Chang;Huanhuan Chao;Hang Che;Qianqiu Che;Danlin Chen;Dongsheng Chen;Faxiu Chen;Guang Chen;Hairong Chen;Hao Chen;Huahua Chen;Huijun Chen;Jiafu Chen;Jian Chen;Jiasen Chen;Jing Chen;Jinzi Chen;Junrong Chen;lichun Chen;Lijuan Chen;Liyuan Chen;Qun Chen;Run Chen;Shaoxing Chen;Song Chen;Tieshuang Chen;Xianghong Chen;Xiaowu Chen;Xudong Chen;Xue Chen;Xunchun Chen;Yao Chen;Yongli Chen;Yuanyue Chen;Yuhong Chen;Yuyi Chen;Zhangying Chen;Zhidong Chen;Zuyi Chen;Caiming Cheng;Jianbin Cheng;Xiaoxia Cheng;Junjie Chu;Ru;Xiaolin Cui;Xuechen Cui;Yang Cui;Zhonghua Cui;Wan;Xing Dai;Chunxia Ding;Huihong Ding;Qiuhong Ding;Yaozong Ding;Yingjie Ding;Jiajia Dong;Lei Dong;Qi Dong;Yumei Dong;Bing Du;Hong Du;Jie Du;Laijing Du;Meiling Du;Qiong Du;Tianmin Du;Xue Du;Ru Duan;Xiaojing Duan;Xiaoting Duan;Dandan Fan;Xiaohong Fan;Xin Fan;Fang Fang;J. Fang;Xibo Fang;Yang Fang;Erke Feng;Hejin Feng;Ling Feng;Rui Feng;Zhaohui Feng;Hongmei Fu;Qiuai Fu;Haofei Gao;Lina Gao;Lina Gao;Liwei Gao;Lu Gao;Min Gao;Qian Gao;Yuan Gao;Hongxu Geng;Hui Geng;Leijun Geng;Lianqing Geng;Hongyan Gou;Qin Gu;Lili Guan;Shuo Guan;Wenchi Guan;Zheng Guan;Bin Guang;Anran Guo;Changhong Guo;Gaofeng Guo;Lizhi Guo;Qing Guo;Qiue Guo;Ying Guo;Zhihua Guo;Aihong Han;Meihong Han;Suhui Han;Xinru Han;Yajun Han;Feng Hao;Jingmin Hao;Shiguo Hao;Chuanhui He;Dejian He;Mengyuan He;Miaomiao He;Shaojuan He;Wenkai He;Xiaoyu He;Yuxiang He;Jige Hong;Chuanxing Hou;Jing Hou;Danli Hu;Jian Hu;Jun Hu;Lingai Hu;Mengying Hu;Zhiyuan Hu;Anhui Huang;Chunxia Huang;Haolin Huang;Jianlan Huang;Shan Huang;Siqi Huang;Weijun Huang;Wenxiu Huang;Xinghe Huang;Xinsheng Huang;Xinxin Huang;Jiliang Hui;Lijun Hui;Zhongsheng Hui;Fangjie Huo;Runqing Ji;Guojiong Jia;Hao Jia;Jingjing Jia;Jingmei Jia;Xiaoling Jia;Hua Jiang;Jingcheng Jiang;Qian Jiang;Xianyan Jiang;Xiaoyuan Jiang;Yanxiang Jiang;Yunhong Jiao;Liying Jie;Binbin Jin;Lingjiao Jin;Renshu Jin;Rong Jin;Xiang Jin;Xianping Jin;Yongfan Jin;Zepu Jin;Zhenan Jin;Chengrong Jing;Jiajie Jing;Ruiling Jing;Liping Kang;Yu Kang;Jianqiong Kong;Shijie Kou;Xianli Kou;Kulaxihan;Jijia Lai;Baoxiang Li;Bin Li;Bing Li;Chaohui Li;Cheng Li;Chunmei Li;Chunyan Li;Daqing Li;Deen Li;Di Li;Feng Li;Guanyi Li;Haiyang Li;Hongwei Li;Jia Li;Jialin Li;Jianan Li;Jianguang Li;Jiaying Li;Jinmei Li;Lala Li;Li Li;Lijun Li;Liping Li;Lize Li;Mingju Li;Minglan Li;Mingyan Li;Nana Li;Nana Li;Nana Li;Qiang Li;Qianru Li;Ruihong Li;Ruihong Li;Shanshan Li;Shilin Li;Si Li;Suwen Li;Tongshe Li;Tongying Li;Wanke Li;Wei Li;Wenbo Li;Wenjuan Li;Xiangxia Li;Xiao Li;Xiaohui Li;Xingyan Li;Xiujuan Li;Yanfang Li;Yang Li;Yanxia Li;Yaona Li;Yichong Li;Ying Li;Yuqing Li;Zhengye Li;Zhengye Li;Chuanliang Liang;Jihua Liang;Jin Liang;Ke Liang;Linju Liang;Tingchen Liang;Xianfeng Liang;Xianfeng Liang;Yanli Liang;Zhenye Liang;Zhenbang Lie;Qingfei Lin;Ruifang Lin;Xiao Lin;Zhiqiang Lin;Aijun Liu;Chao Liu;Chunxia Liu;Cong Liu;Fang Liu;Guaiyan Liu;Hongjun Liu;Jiangling Liu;Jianqi Liu;Jieyun Liu;Jihong Liu;Jinsha Liu;Juan Liu;Junfang Liu;Liming Liu;Ling Liu;Ling Liu;Lu Liu;Qiang Liu;Qiaoling Liu;Qiaoxia Liu;Qiuxia Liu;Shaobo Liu;Xiaobao Liu;Xiaocheng Liu;Xiaoyuan Liu;Xinbo Liu;Xu Liu;Yang Liu;Yanhu Liu;Yanming Liu;Yaqin Liu;Yong Liu;Zhihong Liu;Jing Long;Futang Lu;Huamei Lu;Junhong Lu;Weibin Lu;Yanrong Lu;Yuchun Lu;Tianwei Luan;Qingwei Luo;Qun Luo;T. Luo;Xia Luo;Yongmei Luo;Jing Lv;Jinhai Lv;Lei Lv;Lili Lv;Meng Lv;Aiqing Ma;Huaimin Ma;Huihuang Ma;Jie Ma;Jinbao Ma;Li Ma;Lingzhen Ma;Nan Ma;Qiaojuan Ma;Shumei Ma;Tengfei Ma;Xiange Ma;Xiaowen Ma;Yuehua Ma;Lanxian Mai;Xiao Mei;Gen Meng;Ruichao Miao;Xue Miao;Xuyan Miao;Tingting Min;Shubing Mo;Morigentu;Tingyan Nan;Jinyang Ni;Shuguo Ni;Yu Nie;Benxing Ning;Xiaowei Ning;Manman Niu;Qingying Niu;Wentang Niu;Xiaoxia Niu;Fang Ou;Biyun Pan;Chengjie Pan;Congming Pan;Jieli Pan;X. Pan;Ziying Pan;Guangzhong Pei;Lingyu Pei;Min Pei;Y. Pei;Yinyu Peng;Yuming Peng;Zhaokun Pu;Fengjun Qi;Liwei Qi;M. Qi;Yan Qi;Jun Qian;Lei Qin;Zhonghua Qin;Lan Qing;Lixia Qiu;Weiyu Qiu;Xiaoling Qiu;Yueli Qu;Minghua Quan;Dingping Ren;Hong Ren;Lingzhi Ren;Tingting Ren;Wei Ren;Yihui Ren;Yufang Rong;Jiahui Ruan;Peiqin Shang;M. Shao;Xuefeng Shao;Yuling Shao;Junrong Shen;Rui Shen;Lin Sheng;Jiangjie Shi;Xun Shi;Yanhong Shi;Yeju Shi;Yujiao Shi;Bo Shu;Bingchun Song;Dan Song;Jinhui Song;Jinwang Song;Jinxian Song;Wei Song;Xiaoping Song;Yawen Song;He Su;Qinfeng Su;Shuhong Su;Xiaozhou Su;Chengxiang Sun;Fangfang Sun;Gongping Sun;Jiangnan Sun;Mengmeng Sun;Rongrong Sun;Shuting Sun;Songtao Sun;Ying Sun;Yongmiao Sun;Yunhong Sun;Zhiqiang Sun;Mengying Suo;Binghu Tan;Chunyan Tang;Zhongli Tang;Yu Tao;Changming Tian;Hongmei Tian;Jian Tian;Xiaomin Tian;Huaibin Wan;Qin Wan;Rongjun Wan;Bobin Wang;Chaoqun Wang;Chaoqun Wang;Chengliang Wang;Di Wang;Enfang Wang;Feng Wang;Gang Wang;Guangqiang Wang;Guixiang Wang;Haifeng Wang;Haijun Wang;Haiyang Wang;Jianfang Wang;Jianfeng Wang;Jing Wang;Junping Wang;Junying Wang;Kang Wang;Lei Wang;Lin Wang;Lize Wang;Meng Wang;Pan Wang;Qi Wang;Qiong Wang;Qiuli Wang;Qiuxue Wang;Ran Wang;Shaojin Wang;Shuai Wang;Tao Wang;Tiantian Wang;Tinghui Wang;Tongyan Wang;Wanhong Wang;Wenjuan Wang;Wenyan Wang;Wenying Wang;Wenzhuan Wang;Xiaofei Wang;Xiaoyan Wang;Xitong Wang;Xu Wang;Yan Wang;Yanfang Wang;Yang Wang;Yanping Wang;Yanying Wang;Yaoxin Wang;Yingli Wang;Yiting Wang;Yue Wang;Yumei Wang;Yuzhuo Wang;Zhenhua Wang;Zhifang Wang;Zhimin Wang;Chunli Wei;Lixia Wei;Pei Wei;Shuying Wei;Xiqing Wei;Hong Wen;Yun Wen;Chaoqun Wu;Hairong Wu;Lihua Wu;Lingxiang Wu;Qi Wu;Shaorong Wu;Wenting Wu;Xueyi Wu;Yongshuan Wu;Zhihao Wu;Zhuying Wu;Zongyin Wu;Wuhanbilige;Jun Xia;Yang Xia;Jing Xiang;Heliu Xiao;Yaying Xiao;Meiling Xie;Yinyan Xie;Huiling Xin;Jing Xing;Guoquan Xiu;Baohua Xu;Chuangze Xu;En Xu;Jian Xu;Shuli Xu;Wei Xu;Wen Xu;Na Xue;Tingting Xue;Wei Xue;Haiyan Yan;Yanqing Yan;Bo Yang;Huiyu Yang;Huiyu Yang;Jinhua Yang;Kun Yang;Man Yang;Mengya Yang;Ning Yang;Ping Yang;Xiajiao Yang;Xiaomo Yang;Xin Yang;Xiujuan Yang;Xuemei Yang;Xuming Yang;Yan Yang;Yanhua Yang;Yi Yang;Yuanyuan Yang;Zhimei Yang;Zhiming Yang;Hui Yao;Lu Yao;Jinling Ye;Wenhua Ye;Mingjiao Yi;Shaowei Yi;Wenyi Yi;Zhimin Yi;Guangxia Yin;Guoyuan Yin;G. Yu;Hairong Yu;Huaitao Yu;Lijie Yu;Lijun Yu;Nana Yu;Qin Yu;Xinli Yu;Yi Yu;Biao Yuan;Chunmei Zeng;Na Zhai;X. Zhai;Hongju Zhan;Aizhen Zhang;Baohua Zhang;Bin Zhang;Caizhu Zhang;Chaoying Zhang;Chengbo Zhang;Chunlai Zhang;Churuo Zhang;Fan Zhang;Feiqin Zhang;Ge Zhang;Hailin Zhang;Hanxue Zhang;Huaixing Zhang;Hui Zhang;Huijuan Zhang;Jinguo Zhang;Jingyu Zhang;Jinyun Zhang;Jisheng Zhang;Jun Zhang;Lei Zhang;Li Zhang;Liang Zhang;Lifeng Zhang;Lina Zhang;Liping Zhang;Min Zhang;Ping Zhang;Qiang Zhang;Rufang Zhang;Ruifen Zhang;Shengde Zhang;Siqi Zhang;Sufang Zhang;Tingting Zhang;Wanyue Zhang;Weiliang Zhang;Xiaohan Zhang;Xiaohong Zhang;Xiaojuan Zhang;Xin Zhang;Xue Zhang;Xuewei Zhang;Yachen Zhang;Yang Zhang;Yanyan Zhang;Yaojie Zhang;Yingyu Zhang;Yuan Zhang;Yunfeng Zhang;Yunfeng Zhang;Zaozhang Zhang;Zhichao Zhang;Baihui Zhao;Dan Zhao;Fuxian Zhao;Guizeng Zhao;Haijie Zhao;Honglei Zhao;Hui;Jindong Zhao;Juan Zhao;Liming Zhao;Ling Zhao;Ling Zhao;Qingxia Zhao;Qiuping Zhao;Wanchen Zhao;Wangxiu Zhao;Weiyi Zhao;Xiaodi Zhao;Xiaojing Zhao;Xiaoli Zhao;Xiaoyan Zhao;Xiling Zhao;Yannan Zhao;Yiyuan Zhao;Shuzhen Zheng;Lixia Zhi;Hui Zhong;Qing Zhong;X. Zhong;Yun;Jianfeng Zhou;Jihu Zhou;Ke Zhou;Liangliang Zhou;Ling Zhou;Na Zhou;Shengcheng Zhou;Suyun Zhou;Tao Zhou;Wanren Zhou;Weifeng Zhou;Weijuan Zhou;Xiaohong Zhou;Yunke Zhou;Yuquan Zhou;Zhaohai Zhou;Zhiming Zhou;Bingpo Zhu;Jifa Zhu;Jing Zhu;Mengnan Zhu;Youcun Zhu;Dafei Zong;H.Y. Zuo;Zhaokai Zuo
  • 通讯作者:
    Zhaokai Zuo
Distribution of Welding Residual Stress of Mixed Steel U-Rib-Stiffened Plates
  • DOI:
    10.1007/s12209-018-0178-y
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    7.1
  • 作者:
    Qiu Zhao;Zhansheng Zhai;Yu Nie
  • 通讯作者:
    Yu Nie
A Greedy Path-Based Algorithm for Traffic Assignment
一种基于贪婪路径的流量分配算法
Ir-Catalyzed Asymmetric Hydrogenation of α-Alkylidene β-Lactams and Cyclobutanones
Ir 催化 α-亚烷基 β-内酰胺和环丁酮的不对称氢化
  • DOI:
    10.1002/cjoc.201800088
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Jingzhao Xia;Yu Nie;Guoqiang Yang;Yangang Liu;Ilya D. Gridnev;Wanbin Zhang
  • 通讯作者:
    Wanbin Zhang
The effects of introducing Flemingia macrophylla to rubber plantations on soil water content and exchangeable cations
橡胶园引种千斤拔对土壤含水量及交换性阳离子的影响
  • DOI:
    10.1016/j.catena.2018.08.038
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Chang-An Liu;Yu Nie;Xin Rao;Jian-Wei Tang;Kadambot H.M. Siddique
  • 通讯作者:
    Kadambot H.M. Siddique

Yu Nie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Nie', 18)}}的其他基金

Toward an Integrative Approach to Machine Learning for Traffic Management
交通管理机器学习的综合方法
  • 批准号:
    2225087
  • 财政年份:
    2022
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An Autonomous Modular Vehicle Technology-based Multifaceted Mobility Service Paradigm – A Proof-of-Concept Study
EAGER/协作研究:基于自主模块化车辆技术的多方面移动服务范式 — 概念验证研究
  • 批准号:
    2127678
  • 财政年份:
    2021
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Standard Grant
SCC-PG: Improving healthcare access in marginalized communities through smart connected technologies
SCC-PG:通过智能互联技术改善边缘化社区的医疗保健服务
  • 批准号:
    2125488
  • 财政年份:
    2021
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Standard Grant
Rethink Ride-Hail: From Understanding Limits to Reaching Full Potential
重新思考网约车:从了解限制到充分发挥潜力
  • 批准号:
    1922665
  • 财政年份:
    2019
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Standard Grant
PFI:BIC - Smart CROwdsourced Urban Delivery (CROUD) System
PFI:BIC - 智能众包城市交付 (CROUD) 系统
  • 批准号:
    1534138
  • 财政年份:
    2015
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Standard Grant
Collaborative Research: CybeR-Enabled Demand-Interactive Transit for the Next-Generation Transportation Systems
合作研究:CybeR 支持的下一代交通系统的需求互动交通
  • 批准号:
    1402911
  • 财政年份:
    2014
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: From Pricing to Cap-and-Trade: Analysis and Design of Quantity-based Approach to Congestion Management
EAGER/协作研究:从定价到总量控制与交易:基于数量的拥塞管理方法的分析和设计
  • 批准号:
    1256021
  • 财政年份:
    2012
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Standard Grant

相似国自然基金

基于三状态仓室模型的工程变更多阶段双流传播决策理论与方法
  • 批准号:
    52175219
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
让建言更多含金量:员工建言质量的内涵、测量与前因机制研究
  • 批准号:
    71802008
  • 批准年份:
    2018
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
儿童从3D媒体中能学得更快更多吗?——三维媒体到现实世界的迁移学习机制
  • 批准号:
    31200783
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Data-driven phenotyping of central disorders of hypersomnolence with unsupervised clustering: toward more reliable diagnostic criteria
无监督聚类的数据驱动的中枢性嗜睡症表型分析:寻求更可靠的诊断标准
  • 批准号:
    481046
  • 财政年份:
    2023
  • 资助金额:
    $ 53.65万
  • 项目类别:
SHF: Medium: More Reliable Image Networks through Scene-based Specification, Neuro-symbolic Training, and Systematic Specification-driven Testing
SHF:中:通过基于场景的规范、神经符号训练和系统规范驱动测试实现更可靠的图像网络
  • 批准号:
    2312487
  • 财政年份:
    2023
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Standard Grant
Can the integration of Spatio-temporal continuity lead to more reliable and bio-plausible Capsule-based Networks when trained in an unsupervised way?
当以无监督的方式进行训练时,时空连续性的整合能否带来更可靠和生物合理的基于胶囊的网络?
  • 批准号:
    2784419
  • 财政年份:
    2022
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Studentship
SEE MORE MAKE MORE: Secondary Electron Energy Measurement Optimised for Reliable Manufacture of Key Materials: Opportunity, Realisation, Exploitation
查看更多 创造更多:二次电子能量测量优化以实现关键材料的可靠制造:机遇、实现、开发
  • 批准号:
    EP/V012762/1
  • 财政年份:
    2021
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Research Grant
See More Make More: Secondary Electron Energy Measurement Optimised for Reliable Manufacture of Key Materials: Opportunity, Realisation, Exploitation
查看更多 创造更多:为关键材料的可靠制造而优化的二次电子能量测量:机会、实现、开发
  • 批准号:
    EP/V012037/1
  • 财政年份:
    2021
  • 资助金额:
    $ 53.65万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了