Workshop on Stochastic Multiscale Methods: Mathematical Analysis and Algorithms; August 2009, Los Angeles, CA

随机多尺度方法研讨会:数学分析和算法;

基本信息

  • 批准号:
    0917661
  • 负责人:
  • 金额:
    $ 2.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

Exchanging information across scales is one of the most significant challenges in multiscale modeling and simulation. By necessity, and naturally within a multiscale context, information is truncated as it is presented to a coarser scale, and is enriched as it traverses the opposite path. Information is lost and corrupted as it is, respectively, upscaled and downscaled. Mitigating these errors can be set on rigorous ground through a probabilistic description of information, whence finite-dimensional approximations of measures provides an analytical path for describing the coarsening and refining of information. Stochastic analysis, therefore, provides a rational context for the analysis of multiscale methods. This workshop on "Stochastic Multiscale Methods: Mathematical Analysis and Algorithms"will serve to define challenges and opportunities in the development of stochastic multiscale methods for various problems in science and engineering. Issues of uncertainty quantification, model validation, and optimization under uncertainty have taken center stage in many areas of science and engineering. Likewise, multiscale modeling and computing capabilities are becoming the standard against which model-based predictions are gauged. It thus behooves the scientific community, at this juncture, to elucidate the mathematical foundation of stochastic multiscale concepts so as to ensure a steady evolution of scientific capabilities as engines of economical growth societal well-being. This workshop will initiate a dialog between mathematicians, mechanicians, and computational scientists that will lay the foundation for an accelerated growth in stochastic multiscale methods.Rapid growth in computational resources has heightened the expectation that scientific knowledge can indeed be a driver for societal well-being and betterment. At the same time, our ability to measure the natural and social world around has significantly increased, aided by technological development in sensors, the internet, and other modalities of communication. Science is thus faced, simultaneously, with a complex description of reality at an unprecendented resolution, and the possibility to describe this reality with mathematical models of increasing complexity.Multiscale descriptions of physical problems can be viewed as attempts to take advantage of these new oppotunities, while tackling the conceptual challenges they inevitably present.The communities of stochastic analysis and computational science have evolved essentially along separate paths. The path forward, however, in the direction of disruptive scientific impact, requires significant exchange andcollaboration. It is the intent of this Workshop ``Stochastic Multiscale Methods:Mathematical Analysis and Algorithms'' to bring together leading researchers in these two fields with view to delineate new horizons and forge new synergies that will accelerate the evolution of multiscale capabilities to become an enabler of scientific and economic progress.
跨尺度交换信息是多尺度建模和仿真中最重大的挑战之一。 必然地,并且自然地在多尺度背景下,信息在以较粗尺度呈现时被截断,并且在穿过相反路径时被丰富。信息在放大和缩小时会丢失和损坏。 可以通过信息的概率描述在严格的基础上减轻这些误差,因此测量的有限维近似提供了用于描述信息的粗化和细化的分析路径。因此,随机分析为多尺度方法的分析提供了合理的背景。 本次研讨会“随机多尺度方法:数学分析和算法”将有助于定义针对科学和工程中各种问题的随机多尺度方法开发中的挑战和机遇。 不确定性量化、模型验证和不确定性下的优化问题已成为科学和工程许多领域的中心议题。 同样,多尺度建模和计算能力正在成为衡量基于模型的预测的标准。 因此,科学界在此时此刻有必要阐明随机多尺度概念的数学基础,以确保科学能力的稳定发展,作为经济增长和社会福祉的引擎。 本次研讨会将发起数学家、机械师和计算科学家之间的对话,这将为随机多尺度方法的加速发展奠定基础。计算资源的快速增长提高了人们对科学知识确实可以成为社会福祉驱动力的期望和改善。 与此同时,在传感器、互联网和其他通信方式技术发展的帮助下,我们测量周围自然和社会世界的能力显着增强。 因此,科学同时面临着以前所未有的分辨率对现实进行复杂描述,以及用日益复杂的数学模型来描述这种现实的可能性。物理问题的多尺度描述可以被视为利用这些新机会的尝试,同时解决它们不可避免地带来的概念挑战。随机分析和计算科学的社区基本上沿着不同的路径发展。然而,朝着颠覆性科学影响的方向前进,需要大量的交流与合作。 本次研讨会“随机多尺度方法:数学分析和算法”的目的是将这两个领域的领先研究人员聚集在一起,以期描绘新的视野并形成新的协同效应,从而加速多尺度能力的发展,成为推动者科学和经济进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Ghanem其他文献

Probabilistic assessment of scalar transport under hydrodynamically unstable flows in heterogeneous porous media
  • DOI:
    10.1016/j.advwatres.2024.104706
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    A. Bonazzi;Xiaoshu Zeng;Roger Ghanem;Birendra Jha;F. D. de Barros
  • 通讯作者:
    F. D. de Barros
Machine learning-aided damage identification of mock-up spent nuclear fuel assemblies in a sealed dry storage canister
  • DOI:
    10.1016/j.engappai.2023.107484
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bozhou Zhuang;Anna Arcaro;B. Gencturk;Roger Ghanem
  • 通讯作者:
    Roger Ghanem
Switching diffusions for multiscale uncertainty quantification
多尺度不确定性量化的切换扩散
  • DOI:
    10.1016/j.ijnonlinmec.2024.104793
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zheming Gou;Xiaohui Tu;Sergey V. Lototsky;Roger Ghanem
  • 通讯作者:
    Roger Ghanem

Roger Ghanem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roger Ghanem', 18)}}的其他基金

Collaborative Research: RIPS Type 1: Human Geography Motifs to Evaluate Infrastructure Resilience
合作研究:RIPS 类型 1:评估基础设施弹性的人文地理学主题
  • 批准号:
    1441190
  • 财政年份:
    2014
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Standard Grant
Stochastic Prediction for the Design and Management of Interacting Complex Systems
交互复杂系统设计和管理的随机预测
  • 批准号:
    1025043
  • 财政年份:
    2010
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Accelerating Innovation in Agent-Based Simulations: Application to Complex Socio-Behavioral Phenomena
EAGER/协作研究:加速基于代理的模拟创新:在复杂社会行为现象中的应用
  • 批准号:
    1002517
  • 财政年份:
    2010
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncertainty quantification for petascale simulation of carbon sequestration through fast ultra-scalable stochastic finite element methods.
合作研究:通过快速超可扩展随机有限元方法对千万亿级碳封存模拟进行不确定性量化。
  • 批准号:
    0904754
  • 财政年份:
    2009
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Standard Grant
Opportunities and Challenges in Uncertainty Quantification for Complex Interacting Systems
复杂相互作用系统不确定性量化的机遇和挑战
  • 批准号:
    0849537
  • 财政年份:
    2008
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Computational System for Probability Based Multi-Scale Model of Ductile Fracture in Heterogeneous Metals and Alloys
合作研究:异种金属和合金中基于概率的延性断裂多尺度模型集成计算系统
  • 批准号:
    0728304
  • 财政年份:
    2007
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Standard Grant
AMC-SS: Computational Algorithms and Reduced Models for Stochastic PDEs
AMC-SS:随机偏微分方程的计算算法和简化模型
  • 批准号:
    0512231
  • 财政年份:
    2005
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Standard Grant
Probabilistic Mechanics Conference
概率力学会议
  • 批准号:
    0435779
  • 财政年份:
    2004
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Standard Grant
Workshop on Uncertainty Quantification and Error Estimation
不确定性量化与误差估计研讨会
  • 批准号:
    0351706
  • 财政年份:
    2003
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Standard Grant
Decision Support for Flow in Porous Media: Optimal Sampling for Data Assimilation
多孔介质流动的决策支持:数据同化的最佳采样
  • 批准号:
    9870005
  • 财政年份:
    1998
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Continuing Grant

相似国自然基金

带奇异系数的多尺度随机(偏)微分方程的渐近行为研究
  • 批准号:
    12301179
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于隐式几何描述的梯度随机点阵结构多尺度建模与优化设计
  • 批准号:
    12372200
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于随机等效骨料场的轻骨料混凝土受弯构件性能多尺度分析
  • 批准号:
    52378122
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
腐蚀-地震时空作用下长输天然气管道多尺度随机振动及性态演化研究
  • 批准号:
    52304258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多尺度随机动力系统的渐近行为
  • 批准号:
    12301223
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
  • 批准号:
    2338221
  • 财政年份:
    2024
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Continuing Grant
Performance design based on stochastic process simulation of multiscale internal structure in concrete
基于混凝土多尺度内部结构随机过程模拟的性能设计
  • 批准号:
    21K04211
  • 财政年份:
    2021
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diversity and Universality of Multiscale Earthquake Processes and Stochastic Modeling
多尺度地震过程的多样性和普遍性与随机模拟
  • 批准号:
    20K14576
  • 财政年份:
    2020
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multiscale Analysis of Infinite-Dimensional Stochastic Systems
无限维随机系统的多尺度分析
  • 批准号:
    1954299
  • 财政年份:
    2020
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Multiscale Stochastic Modeling and Analysis of the Ocean Circulation
NSFGEO-NERC:海洋环流的多尺度随机建模与分析
  • 批准号:
    NE/R011567/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.49万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了