Efficient Solution of Advection Dominated PDE Constrained Optimization Problems
平流主导偏微分方程约束优化问题的高效求解
基本信息
- 批准号:0915238
- 负责人:
- 金额:$ 26.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this proposal is to develop, analyze and implement optimizationalgorithms that integrate multilevel iterative solvers, adaptive mesh refinement methods, and so-called `all-at-once' methods for the solution of optimization problems governed by advection dominated partial differential equations (PDEs). The presence of strong advection in the governing PDE creates many challenges forthe numerical solution of these optimization problems, beyond the challenges alreadyencountered in the numerical simulation of single advection dominated PDEs and beyondthe many difficulties in solving PDE constrained optimization problems with weak or no advection. One reason for the additional challenges arising in the optimization context is the presence of the so-called adjoint equation, which is also an advection dominated PDE, but with advection given by the negative of the advection in the governing equation. This can cause significant and perhaps unexpected differences in the behavior of discretization schemes and iterative solvers when they are extended from the application to single advection dominated PDEs to the solution of PDE constrained optimization problems. This research will analyze the sources of these differences, their impact on the quality of computed solutionand on the efficiency of solution algorithms. Another goal is to devise modifications of multilevel iterative solvers, adaptive mesh refinement methods, and so-called KKT solvers tomake them robust against the presence of advection.Many important real-life applications such as the shape optimization of technological devices, the optimal control of systems, and the identification of parameters in environmentalprocesses lead to optimization problems governed by systems of advection dominatedpartial differential equations. This research addresses mathematical and algorithmicissues that are crucial for the reliable and efficient solution of these problems. It will leadto a better theoretical understanding of the solution properties of these optimization problems as well as to new computational tools for their reliable and efficient solution. Furthermore, it will provide training opportunities for students in an important area of computational science.
该提案的目的是开发、分析和实现集成多级迭代求解器、自适应网格细化方法和所谓的“一次性”方法的优化算法,用于解决由平流主导的偏微分方程控制的优化问题(偏微分方程)。主导偏微分方程中强对流的存在给这些优化问题的数值求解带来了许多挑战,超出了单一对流主导偏微分方程数值模拟中已经遇到的挑战,也超出了求解弱对流或无对流的偏微分方程约束优化问题的许多困难。优化环境中出现额外挑战的原因之一是所谓的伴随方程的存在,该方程也是平流主导的偏微分方程,但平流由控制方程中平流的负值给出。当离散化方案和迭代求解器从应用扩展到单个平流主导的 PDE 到 PDE 约束优化问题的解决方案时,这可能会导致离散化方案和迭代求解器的行为出现显着的甚至意外的差异。 本研究将分析这些差异的来源、它们对计算解的质量和求解算法的效率的影响。另一个目标是设计多级迭代求解器、自适应网格细化方法和所谓的 KKT 求解器的修改,以使它们对平流的存在具有鲁棒性。许多重要的现实应用,例如技术设备的形状优化、系统,以及环境过程中参数的识别导致由平流主导偏微分方程系统控制的优化问题。这项研究解决了对于可靠有效地解决这些问题至关重要的数学和算法问题。它将带来对这些优化问题的解决方案属性的更好的理论理解,以及新的计算工具来提供可靠和有效的解决方案。此外,它将为学生提供计算科学重要领域的培训机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Heinkenschloss其他文献
Sensitivity Technologies for Large Scale Simulation
大规模仿真的灵敏度技术
- DOI:
10.2172/921606 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Collis;R. Bartlett;Thomas Michael Smith;Matthias Heinkenschloss;Lucas C. Wilcox;Judith C. Hill;Omar Ghattas;Martin Olof Berggren;V. Akçelik;C. Ober;B. van Bloemen Waanders;E. Keiter - 通讯作者:
E. Keiter
Interpolatory model reduction of quadratic-bilinear dynamical systems with quadratic-bilinear outputs
具有二次双线性输出的二次双线性动力系统的插值模型简化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Alejandro N. Diaz;Matthias Heinkenschloss;I. V. Gosea;A. Antoulas - 通讯作者:
A. Antoulas
g Institut für Mathematik
g 数学研究所
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Harbir Antil;Matthias Heinkenschloss;Ronald H. W. Hoppe;Danny C. Sorensen - 通讯作者:
Danny C. Sorensen
Matthias Heinkenschloss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Heinkenschloss', 18)}}的其他基金
Novel Multiple-Shooting Algorithms for Optimization Governed by Time-Dependent Partial Differential Equations
时相关偏微分方程控制的新型多重射击优化算法
- 批准号:
1819144 - 财政年份:2018
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Numerical Solution of Constrained Optimization Problems Governed by Partial Differential Equations with Uncertain Parameters
参数不确定的偏微分方程约束优化问题的数值求解
- 批准号:
1522798 - 财政年份:2015
- 资助金额:
$ 26.48万 - 项目类别:
Continuing Grant
Collaborative Research: Reduced Order Model Approaches for Time Dependent Nonlinear PDE Constrained Optimization
协作研究:用于瞬态非线性 PDE 约束优化的降阶模型方法
- 批准号:
1115345 - 财政年份:2011
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Collaborative Research: Multigrid Methods for PDE Constrained Optimization
协作研究:偏微分方程约束优化的多重网格方法
- 批准号:
0511624 - 财政年份:2005
- 资助金额:
$ 26.48万 - 项目类别:
Continuing Grant
ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
- 批准号:
0121360 - 财政年份:2001
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Optimization of Parabolic Systems: Iterative Methods, Suboptimal Controls, and Preconditioning
抛物线系统的优化:迭代方法、次优控制和预处理
- 批准号:
0075731 - 财政年份:2000
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
- 批准号:
9872009 - 财政年份:1998
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Optimization Methods for Optimal Control and Parameter Identification Problems
数学科学:最优控制和参数辨识问题的优化方法
- 批准号:
9403699 - 财政年份:1994
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
相似国自然基金
从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
- 批准号:32371621
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
- 批准号:82371986
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
数智驱动下高科技企业场景式解决方案研究:理论模型、构建机制及市场响应性
- 批准号:72272082
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
晶界偏聚对CdTe太阳电池梯度吸收层体系的影响机制及解决方案
- 批准号:62174070
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
约束作用下金属锂全电池负极退化机理原位监测及解决方案
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Viscosity solution theory for quasilinear PDEs, free boundary problems and thier applications
拟线性偏微分方程的粘度解理论、自由边界问题及其应用
- 批准号:
18K13436 - 财政年份:2018
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Foundamental research for microparticle formation by rapid expansion of supercritical solution method
超临界溶液法快速膨胀微粒形成的基础研究
- 批准号:
24560921 - 财政年份:2012
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On a dynamics of a solution for geometric evolution equations with a variational structure
具有变分结构的几何演化方程解的动力学
- 批准号:
20740086 - 财政年份:2008
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mathematical Study of the Nonlinear Partial Differential Equations Arising in the Statistical Mechanics
统计力学中非线性偏微分方程的数学研究
- 批准号:
16340047 - 财政年份:2004
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Adaptive hr-mesh refinement for the numerical solution of advection-diffusion equations
平流扩散方程数值解的自适应 HR 网格细化
- 批准号:
0209313 - 财政年份:2002
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant