Reproducing the Extraordinary Mechanical Properties of Biominerals through Multiscale Simulation
通过多尺度模拟再现生物矿物的非凡机械性能
基本信息
- 批准号:0855795
- 负责人:
- 金额:$ 30.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biominerals represent a unique class of simultaneously strong, stiff, hard and tough composites that have been extensively studied by experimentalists and that to date we have not succeeded to replicate. This proposal aims to develop a fundamental understanding of the origins of the unusual mechanical properties of calcium carbonate biominerals and to reproduce the extraordinary mechanical properties of nacre in computer simulation as a direct result of its architecture and essential composition. This research will (1) establish a simulation tool that predicts the mechanical properties of biominerals from constituent molecules to millimeter-sized specimens, (2) determine the essential molecular structure and function of the organic interfaces that link the multi-level structures of nacre, (3) establish the precise nature of the effect of the hierarchical architecture as well as the organic interfaces on the mechanical properties of calcium carbonate biominerals, and (4) develop a fundamental understanding of the multiscale mechanics of hierarchically-structured composite materials.Success in reproducing the mechanical properties of biominerals in simulations, hence in understanding the mechanisms that give rise to the remarkable mechanical properties of biominerals, will lead to the development of next generation high-strength high-toughness ceramics. Success of this research will also stimulate students? interest in mechanics and mechanical engineering through the fascinating biological world. The research project will involve a diversity of students including female and minority students, undergraduate and graduate students, and will provide these students with an unparalleled opportunity to gain knowledge and to develop skills in an interdisciplinary research area. Computer models and codes developed will be posted for public use and for feedback. Research results will be published in journals and on the internet, and will be presented at conferences, seminars and workshops.
生物矿物代表了一类独特的同时坚固、坚硬、坚硬和坚韧的复合材料,实验人员已经对其进行了广泛研究,但迄今为止我们尚未成功复制。该提案旨在对碳酸钙生物矿物不寻常的机械性能的起源有一个基本的了解,并在计算机模拟中重现珍珠质的非凡机械性能,作为其结构和基本成分的直接结果。 这项研究将(1)建立一个模拟工具,预测从组成分子到毫米大小的样本的生物矿物的机械特性,(2)确定连接珍珠层多层结构的有机界面的基本分子结构和功能, (3) 确定分级结构以及有机界面对碳酸钙生物矿物机械性能影响的精确性质,以及 (4) 对分级结构复合材料的多尺度力学有基本的了解。繁殖模拟生物矿物的机械性能,从而了解生物矿物卓越机械性能的机制,将有助于开发下一代高强度高韧性陶瓷。这项研究的成功也会刺激学生吗?通过迷人的生物世界对机械和机械工程产生兴趣。 该研究项目将涉及多元化的学生,包括女性和少数民族学生、本科生和研究生,并将为这些学生提供无与伦比的机会来获取跨学科研究领域的知识和发展技能。开发的计算机模型和代码将发布以供公众使用和反馈。研究成果将在期刊和互联网上发表,并将在会议、研讨会和讲习班上展示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Youping Chen其他文献
Multiscale Concurrent Atomistic-Continuum (CAC) modeling of multicomponent alloys
多元合金的多尺度并发原子连续体 (CAC) 建模
- DOI:
10.1016/j.commatsci.2021.110873 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:3.3
- 作者:
K. Chu;Adrian Diaz;Youping Chen;T. Zhu;D. McDowell - 通讯作者:
D. McDowell
Clinical and Pathological Spectrum of Aortitis in a Chinese Cohort.
中国队列中主动脉炎的临床和病理谱。
- DOI:
10.1016/j.carpath.2024.107651 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:0
- 作者:
Wei Qu;Youping Chen;Zhenlu Zhang - 通讯作者:
Zhenlu Zhang
Comparing EAM Potentials to Model Slip Transfer of Sequential Mixed Character Dislocations Across Two Symmetric Tilt Grain Boundaries in Ni
比较 EAM 势与 Ni 中两个对称倾斜晶界上连续混合特征位错的滑移传递模型
- DOI:
10.1007/s11837-017-2302-1 - 发表时间:
2017-03-10 - 期刊:
- 影响因子:2.6
- 作者:
Shuozhi Xu;Liming Xiong;Youping Chen;D. McDowell - 通讯作者:
D. McDowell
Coarse-graining atomistic dynamics of brittle fracture by finite element method
有限元粗晶脆性断裂原子动力学
- DOI:
10.1016/j.ijplas.2010.04.007 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:9.8
- 作者:
Q. Deng;Liming Xiong;Youping Chen - 通讯作者:
Youping Chen
SliceNet: A proficient model for real-time 3D shape-based recognition
SliceNet:基于实时 3D 形状识别的熟练模型
- DOI:
10.1016/j.neucom.2018.07.061 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:6
- 作者:
Xuzhan Chen;Youping Chen;Kashish Gupta;Jie Zhou;H. Najjaran - 通讯作者:
H. Najjaran
Youping Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Youping Chen', 18)}}的其他基金
Collective Dynamics and Resonances of Phonons and Dislocations in Thermal Transport
热传输中声子和位错的集体动力学和共振
- 批准号:
2121895 - 财政年份:2023
- 资助金额:
$ 30.26万 - 项目类别:
Continuing Grant
Towards a New Framework for the Mechanics of Nonequilibrium Continua
走向非平衡连续体力学的新框架
- 批准号:
2054607 - 财政年份:2021
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
Collaborative Research: Mesoscopic Defect Field Interactions in Materials with High Number Density of Interfaces
合作研究:高界面数密度材料中的细观缺陷场相互作用
- 批准号:
1761512 - 财政年份:2018
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
Collaborative Research: Novel Atomistic-Continuum Simulation of Sequential Grain Boundary-Dislocation Slip Transfer Reactions
合作研究:连续晶界位错滑移传递反应的新型原子连续模拟
- 批准号:
1233113 - 财政年份:2012
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
Linking and Unifying Atomistic and Continuum Mechanics Formulation
连接和统一原子力学和连续力学公式
- 批准号:
1129976 - 财政年份:2012
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
Towards Multiscale Mechanical Design of Hierarchical Cellular Materials
面向分层多孔材料的多尺度机械设计
- 批准号:
0824688 - 财政年份:2009
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
SST: Predicting and Optimizing Nano/Micro Sensor Material Behavior in Extreme Environments
SST:预测和优化极端环境中纳米/微米传感器材料的行为
- 批准号:
0646674 - 财政年份:2006
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
SST: Predicting and Optimizing Nano/Micro Sensor Material Behavior in Extreme Environments
SST:预测和优化极端环境中纳米/微米传感器材料的行为
- 批准号:
0428419 - 财政年份:2004
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
相似国自然基金
河蟹螺原体和非凡螺原体对脊椎动物嗜神经感染机制的研究
- 批准号:31170120
- 批准年份:2011
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344214 - 财政年份:2024
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
$ 30.26万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Extraordinary circadian clocks in araneoid spiders: an integrative approach to understanding their evolutionary origins and underlying mechanisms
合作研究:RUI:类蜘蛛的非凡生物钟:一种理解其进化起源和潜在机制的综合方法
- 批准号:
2235712 - 财政年份:2023
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Extraordinary circadian clocks in araneoid spiders: an integrative approach to understanding their evolutionary origins and underlying mechanisms
合作研究:RUI:类蜘蛛的非凡生物钟:一种理解其进化起源和潜在机制的综合方法
- 批准号:
2235710 - 财政年份:2023
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant