Collaborative Research: Fuel Droplet Disruption under Locally Supersonic Conditions
合作研究:局部超音速条件下的燃料液滴破裂
基本信息
- 批准号:0853817
- 负责人:
- 金额:$ 8.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). 0853817/0853396Hermanson/TryggvasonThis preliminary experimental and computational research program will study the physical mechanisms of disruption and vaporization of liquid droplets in supersonic flow. These mechanisms include the deformation of the droplet due to aerodynamic forces, the inertial instability associated with droplet acceleration, and shear instability due to the high-speed flow across the droplet surface. An additional instability can result from the rapid evaporation that can result from the droplet fluid becoming superheated due to the low static pressure in the test section. The action of these mechanisms will be systematically studied by varying both the flow and thermal boundary conditions, including the Mach number relative to the droplet and the liquid composition. The possible existence of optimum combinations of parameters, such as droplet size, vapor pressure, and compressible free-stream conditions for the most rapid droplet disruption and vaporization will be explored. The original and potentially transformative aspects of this research stem from the combination of locally supersonic conditions with potential liquid superheating, which explores a practically important regime of droplet disruption that has not been examined in depth or in a systematic fashion to date. Droplets will be injected into supersonic flow using small-scale supersonic wind tunnels at the University of Washington (UW). A droplet-on-demand generator will produce monodisperse droplets sufficiently small that the droplets will not disrupt too quickly, but sufficiently large so that the droplets will "lag" the supersonic airflow to create compressible conditions relative to the droplet. Different test section geometries will produce droplets with both subsonic and supersonic Mach numbers relative to the surrounding flow. Diagnostic techniques will include planar laser-induced fluorescence (PLIF), spark schlieren/shadowgraph imaging, double-pulsed laser velocity measurement, and direct photography. These techniques will provide detailed knowledge of the droplet deformation/disruption, the dispersion of the expelled vapor, the droplet acceleration, the compressible flow field near the droplet, and the features of the interfacial instabilities. The computational modeling at Worcester Polytechnic Institute (WPI) will employ a finite volume/front-tracking method capable of simulating droplet deformation and explosive evaporation under compressible flow conditions. The simulations will be conducted synergistically with the experiments, using flow information from the experiments to guide the development and implementation of the numerical modeling. In turn, the numerical simulations will serve both to guide the conduct of the experiments as well as to help interpret the experimental results by providing key information not readily accessible by the experiments, such as the pressure variation in the vicinity of the droplets and the rate of vaporization. This research topic has applications to a number of practically important problems involving the injection of liquids in high-speed flows, including supersonic combustion ramjets (scramjets), pulsed detonation engines, re-entry body cooling, and surface erosion in high-speed flows. Such applications are impacted critically by the nature of droplet disruption and vaporization mechanisms of the liquid fuel droplets to be studied. This research will also directly impact education. The planar laser induced fluorescence and pulsed-laser droplet/particle velocity measurement techniques introduced into the undergraduate curriculum through existing experimental methods courses at the UW. Similarly, the numerical work will lead to examples that will be utilized as classroom examples at WPI. Undergraduate students will also participate directly in carrying out the research. The graduate students will actively participate in the undergraduate component of the program by serving, under faculty supervision, in the role of "grant monitor" for the undergraduate component of the research. Lastly, the co-PIs will recruit qualified and interested members of under-represented groups to conduct research at the University of Washington and at Worcester Polytechnic Institute.
该奖项根据 2009 年《美国复苏和再投资法案》(公法 111-5)提供资金。 0853817/0853396Hermanson/Tryggvason这个初步实验和计算研究项目将研究超音速流中液滴破裂和汽化的物理机制。这些机制包括由于空气动力而导致的液滴变形、与液滴加速相关的惯性不稳定性以及由于穿过液滴表面的高速流动而导致的剪切不稳定性。由于测试部分的低静压,液滴流体变得过热,从而导致快速蒸发,从而导致额外的不稳定性。将通过改变流动和热边界条件(包括相对于液滴和液体成分的马赫数)来系统地研究这些机制的作用。将探讨可能存在的最佳参数组合,例如液滴尺寸、蒸气压和可压缩自由流条件,以实现最快速的液滴破裂和蒸发。这项研究的原创性和潜在的变革性方面源于局部超音速条件与潜在液体过热的结合,它探索了一种实际上重要的液滴破坏机制,但迄今为止尚未进行深入或系统的研究。将使用华盛顿大学 (UW) 的小型超音速风洞将液滴注入超音速流中。按需液滴发生器将产生足够小的单分散液滴,使得液滴不会分裂得太快,但又足够大,使得液滴将“滞后”超音速气流以产生相对于液滴的可压缩条件。不同的测试部分几何形状将产生相对于周围流具有亚音速和超音速马赫数的液滴。诊断技术将包括平面激光诱导荧光 (PLIF)、火花纹影/阴影成像、双脉冲激光速度测量和直接摄影。这些技术将提供有关液滴变形/破裂、排出蒸气的分散、液滴加速度、液滴附近的可压缩流场以及界面不稳定性特征的详细知识。伍斯特理工学院(WPI)的计算模型将采用有限体积/前向跟踪方法,能够模拟可压缩流动条件下的液滴变形和爆炸性蒸发。模拟将与实验协同进行,利用实验中的流动信息来指导数值模型的开发和实施。反过来,数值模拟不仅可以指导实验的进行,还可以通过提供实验不易获得的关键信息(例如液滴附近的压力变化和速率)来帮助解释实验结果。的汽化。该研究课题可应用于涉及高速流中液体喷射的许多实际重要问题,包括超音速燃烧冲压发动机(超燃冲压发动机)、脉冲爆震发动机、再入体冷却和高速流中的表面侵蚀。此类应用受到要研究的液体燃料液滴的液滴破坏性质和汽化机制的严重影响。这项研究也将直接影响教育。通过威斯康星大学现有的实验方法课程,将平面激光诱导荧光和脉冲激光液滴/颗粒速度测量技术引入本科课程。同样,数值工作将产生一些示例,这些示例将用作 WPI 的课堂示例。本科生也将直接参与开展研究。研究生将在教师的监督下,积极参与该项目的本科部分,并担任本科部分研究的“拨款监督员”。最后,联合PI将招募代表性不足群体中合格且感兴趣的成员,在华盛顿大学和伍斯特理工学院进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Hermanson其他文献
Effects of Injection Conditions on Strongly-Pulsed Turbulent Jet Flame Structure
喷射条件对强脉冲湍流射流火焰结构的影响
- DOI:
10.2514/6.2008-1016 - 发表时间:
2008-01-07 - 期刊:
- 影响因子:0
- 作者:
M. Frégeau;Ying;James Hermanson;Dennis Stocker;U. Hegde - 通讯作者:
U. Hegde
James Hermanson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Hermanson', 18)}}的其他基金
Collaborative Research: ISS: Revealing interfacial stability, thermal transport and transient effects in film evaporation in microgravity
合作研究:ISS:揭示微重力下薄膜蒸发的界面稳定性、热传输和瞬态效应
- 批准号:
2224417 - 财政年份:2022
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Numerical and Experimental Study of the Instability Mechanisms and Bubble Growth due to Explosive Boiling
UNS:合作研究:爆炸沸腾引起的不稳定机制和气泡增长的数值和实验研究
- 批准号:
1511152 - 财政年份:2015
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
Collaborative Research: Interfacial Instability, Convective Motion and Heat Transfer in Evaporating Films
合作研究:蒸发膜中的界面不稳定性、对流运动和传热
- 批准号:
0651755 - 财政年份:2007
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
CAREER: Disruption and Vaporization of Superheated Droplets in Compressible Flow
职业:可压缩流中过热液滴的破裂和蒸发
- 批准号:
0302728 - 财政年份:2002
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
CAREER: Disruption and Vaporization of Superheated Droplets in Compressible Flow
职业:可压缩流中过热液滴的破裂和蒸发
- 批准号:
9733830 - 财政年份:1998
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
相似国自然基金
锂化合物电极陶瓷燃料电池离子传输机理及稳定性研究
- 批准号:52372178
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
质子交换膜燃料电池分级有序多孔部件的一体化制造及传质机理研究
- 批准号:52305596
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
重载车用大功率燃料电池高温衰退的演化规律与调控方法研究
- 批准号:52372358
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
醇类燃料分子结构对双燃料发动机碳烟生成和演变规律影响的基础研究
- 批准号:52306164
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
质子陶瓷燃料电池用氢氧根离子导电型氧电极的性能调控与反应机制研究
- 批准号:22379102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
- 批准号:
2324346 - 财政年份:2023
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
ECO-CBET: Collaborative Research: Effect of surface-fuel attributes and forest-thinning patterns on wildfire, carbon storage, and advancing forest restoration
ECO-CBET:合作研究:地表燃料属性和森林间伐模式对野火、碳储存和推进森林恢复的影响
- 批准号:
2318717 - 财政年份:2023
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
ECO-CBET: Collaborative Research: Effect of surface-fuel attributes and forest-thinning patterns on wildfire, carbon storage, and advancing forest restoration
ECO-CBET:合作研究:地表燃料属性和森林间伐模式对野火、碳储存和推进森林恢复的影响
- 批准号:
2318718 - 财政年份:2023
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
- 批准号:
2324345 - 财政年份:2023
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Key Processes Controlling Burning of Heterogeneous Fuel in Wildfires
合作研究:了解控制野火中异质燃料燃烧的关键过程
- 批准号:
2139078 - 财政年份:2022
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant