Efficient solvers for generalized incompressible flow problems with special emphasis on pressure Schur complement techniques for linearized Navier-Stokes equations and extensions
广义不可压缩流动问题的高效求解器,特别强调线性纳维-斯托克斯方程和扩展的压力舒尔补技术
基本信息
- 批准号:19206589
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2005
- 资助国家:德国
- 起止时间:2004-12-31 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, a large amount of work has been devoted to the problem of solving large (linear) systems in saddle point form. The reason for this interest is the fact that such problems arise in a wide variety of technical and scientific applications. In particular, the increasing popularity of mixed finite element methods in engineering fields such as fluid and solid mechanics has been a major source of such saddle point systems, as they typically arise from, the discretization of incompressible flow problems, for instance described by the Navier-Stokes equations. Because of the ubiquitous nature of saddle point systems, a wide literature exists on the discretization aspects and the numerical solution of such systems for many particular applications as well as in general form. A recent comprehensive survey [M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numerica 2005, pp.1-137] can serve as an introduction to the subject, where one can find enormous pointers to the literature on numerics for saddle point problems. This survey shows that the case of stationary and time-dependent Stokes problems has been more or less solved, while the development of efficient solvers for linearized Navier-Stokes equations including convective parts (Oseen equations) and particularly nonlinear viscosity (nonnewtonian, resp., granular flow), and moreover also for extensions which couple the Navier-Stokes equations with additional quantities (k ¿ e turbulence models, Boussinesq equations, multiphase phenomena, viscoelastic problems, fluid-structure interaction), is still a challenging and important task in the field of numerical flow simulation. In this common project, we will combine the special knowledge from each of both research groups, regarding theoretical as well as algorithmic aspects for the numerical treatment of incompressible fluids, with the aim to develop, to analyse and to implement improved solution strategies. In particular, we will concentrate on flow problems with non-constant, resp., nonlinear viscosity for small up to medium Re numbers as they typically arise in micro devices and milli-reactors. The main solution methodology will be based on pressure Schur complement techniques, which are either constructed via globally defined approximate preconditioners in the pressure space only, or which are based on patch wisely defined operators including the pressure Schur complement of the complete flow equations, but in a local sense. These approaches will be applied to saddle point problems arising from the FEM discretization with stable conforming as well as nonconforming Stokes elements, including various polynomial spaces. We will theoretically analyse the developed solution ethodology and realize the solver components in the FEM package FEATFLOW which directly allows a validation and evaluation for a wide class of prototypical flow configurations in the field of chemical engineering applications.
近年来,大量的工作用于解决方案的问题,以鞍点形式出现。在工程领域中,诸如流体和Solidhanics之类的领域是UCH鞍点系统的主要来源,因为它们通常是由不可压缩的流量问题披露的,例如Navier-Stokes方程式。作为一般形式。这项调查表明,案件问题或多或少解决了avier-stokes方程,包括对流零件(OSEEN方程),尤其具有额外数量的Stokes方程(k€ E Turberence模型,Boussinesq方程,多相现象,粘弹性杂物,流体结构相互作用)在这个共同项目中的数值流量模拟领域的重要任务。不可压缩的液体,尤其是改善解决方案的策略,我们将专注于非恒定的流动问题。 r基于贴片的定义,将其压力补充,将其用于稳定的符合和不合格的stokes Elemets Arious多项式空间。教养学并实现他们中的求解器组件包装fartflow iCh可以直接验证和评估化学工程应用领域中广泛的典型流量配置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Stefan Turek其他文献
Professor Dr. Stefan Turek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Stefan Turek', 18)}}的其他基金
Numerical simulation techniques for the efficient and accurate treatment of local fluidic transport processes together with chemical reactions
用于高效、准确地处理局部流体传输过程和化学反应的数值模拟技术
- 批准号:
256652799 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
Fictitious Boundary Methoden für mehrphasige Strömungsprobleme mit Feststoffpartikeln
固体颗粒多相流问题的虚拟边界法
- 批准号:
210488515 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Numerical simulation of monodisperse droplet generation in pneumatic extension nozzles
气动加长喷嘴中单分散液滴生成的数值模拟
- 批准号:
121056419 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Programmiermodelle und High-Performance Computing für Many-Core Architekturen in der numerischen Simulation
数值模拟中多核架构的编程模型和高性能计算
- 批准号:
20291950 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Numerik für mehrphasige Strömungen mit Feststoffpartikeln
含固体颗粒的多相流数值
- 批准号:
36412424 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Herleitung, Analyse und Realisierung von numerischen Diskretisierungstechniken und effizienten Lösern für Lattice Boltzmann Methoden
格子玻尔兹曼方法的数值离散技术和高效求解器的推导、分析和实现
- 批准号:
5444238 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Effiziente numerische Simulation zyklisch betriebener instationärer Festbettprozesse unter besonderer Berücksichtigung steiler und schockartiger Fronten sowie direkte Berechnung zyklisch stationärer Zustände
循环运行的非稳态固定床过程的高效数值模拟,特别考虑陡峭和冲击波锋面以及循环静止状态的直接计算
- 批准号:
5433170 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Monolithische ALE-FEM Techniken für Fluid-Struktur-Wechselwirkungen
用于流固耦合的整体 ALE-FEM 技术
- 批准号:
5391522 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Units
Realisierung von robusten Diskretisierungen, schnellen Lösern und effizienten Datenstrukturen für Probleme mit Fluid-Struktur-Wechselwirkung
针对涉及流固耦合的问题实现稳健的离散化、快速求解器和高效的数据结构
- 批准号:
5303006 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Analysis and postprocessing of space-time compressed flow computations
时空压缩流计算分析与后处理
- 批准号:
5330368 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
面向在线自主求解的高超声速滑翔飞行器轨迹规划方法研究
- 批准号:62303479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于精度预测模型及协同求解的高精度电容式六维力传感器优化设计方法研究
- 批准号:52365066
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
介观尺度下变压器油中颗粒运动模型构建及求解方法研究
- 批准号:52367001
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
基于旋转Riemann求解器的保重要性质的拉氏格式研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多频和高频亥姆霍兹方程的迭代求解器及其收敛性分析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Next-Generation Solvers for Complex Microwave Engineering Problems
复杂微波工程问题的下一代求解器
- 批准号:
DP240102682 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Inviting all 21st century problem-solvers: Building equity by de-tracking middle school mathematics instruction
职业:邀请所有 21 世纪的问题解决者:通过打破中学数学教学的轨道来建立公平
- 批准号:
2336391 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists