Two-dimensional conformal field theories and their moduli space.
二维共形场论及其模空间。
基本信息
- 批准号:0901237
- 负责人:
- 金额:$ 27.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).In the last few years, Huang has proved the Verlinde conjecture and the Verlinde formula which play a fundamental role in Conformal Field Theory and related subjects and has proved the rigidity and modularity of the ribbon category of modules for vertex operator algebras satisfying certain natural conditions. He has investigated other problems in the mathematical foundation of two-dimensional conformal field theory. His interest is in tackling some of the still-unsolved hard problems in that field. The proposed research of Huang is expected to give results on general orbifold conformal field theories and higher-genus conformal field theories, a mathematical understanding of the connection between certain orbifold conformal field theories and certain Calabi-Yau manifolds, a solid foundation to a mathematical theory of deformations of conformal field theories, a better understanding of the geometry of Calabi-Yau manifolds related to conformal field theories and new insight into the mathematics underlying problems in physics. Broader impacts arise from the PI's teaching, mentoring, advising, lecturing, expository writing, conference-organizing, seminar-organizing, volume-editing and other such activities. In particular, he will continue to devote a large amount of time to train REU undergraduate students and Ph.D. students. Huang will continue to encourage the participation of women and members of underrepresented minority groups in their areas of study. Besides studying the theoretical aspects of two-dimensional conformal field theory, Huang is also interested in finding applications of his results and approaches to problems in physics, such as problems related to quantum computing and string theory.
该奖项是根据2009年的《美国复苏与重新投资法》(公法111-5)资助的。在过去的几年中,黄已证明了Verlinde的猜想和Verlinde公式,而Verlinde公式在整形野外理论和相关主题中起着基本作用,并且证明了模量cerse for Verege for vertex perteders Albrbrbrarb albrbr a and corpory crision corpery的刚性和模块化。他研究了二维形成综合场理论的数学基础中的其他问题。他的兴趣是解决该领域中一些尚未解决的困难问题。 The proposed research of Huang is expected to give results on general orbifold conformal field theories and higher-genus conformal field theories, a mathematical understanding of the connection between certain orbifold conformal field theories and certain Calabi-Yau manifolds, a solid foundation to a mathematical theory of deformations of conformal field theories, a better understanding of the geometry of Calabi-Yau manifolds related to conformal field theories and new深入了解物理学中潜在问题的数学。 PI的教学,指导,建议,讲课,会议组织,研讨会组织,数量编辑和其他此类活动产生了更大的影响。特别是,他将继续花费大量时间来培训REU本科生和博士学位。学生。黄将继续鼓励妇女和代表性不足的少数群体的参与。除了研究二维综合场理论的理论方面外,黄还有兴趣寻找其结果的应用和物理问题的方法,例如与量子计算和弦理论有关的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Yi-Zhi Huang其他文献
Virasoro vertex operator algebras, the (nonmeromorphic) operator product expansion and the tensor product theory
- DOI:10.1006/jabr.1996.016810.1006/jabr.1996.0168
- 发表时间:1995-051995-05
- 期刊:
- 影响因子:0.9
- 作者:Yi-Zhi HuangYi-Zhi Huang
- 通讯作者:Yi-Zhi HuangYi-Zhi Huang
A theory of tensor products for module categories for a vertex operator algebra, IV
- DOI:10.1016/0022-4049(95)00050-710.1016/0022-4049(95)00050-7
- 发表时间:1995-051995-05
- 期刊:
- 影响因子:0
- 作者:Yi-Zhi HuangYi-Zhi Huang
- 通讯作者:Yi-Zhi HuangYi-Zhi Huang
Associative algebras and the representation theory of grading-restricted vertex algebras
- DOI:10.1142/s021919972350036010.1142/s0219199723500360
- 发表时间:2020-092020-09
- 期刊:
- 影响因子:1.6
- 作者:Yi-Zhi HuangYi-Zhi Huang
- 通讯作者:Yi-Zhi HuangYi-Zhi Huang
Riemann surfaces with boundaries and the theory of vertex operator algebras
- DOI:10.1090/fic/039/0610.1090/fic/039/06
- 发表时间:2002-122002-12
- 期刊:
- 影响因子:0
- 作者:Yi-Zhi HuangYi-Zhi Huang
- 通讯作者:Yi-Zhi HuangYi-Zhi Huang
Differential equations, duality and modular invariance
- DOI:10.1142/s021919970500191x10.1142/s021919970500191x
- 发表时间:2003-032003-03
- 期刊:
- 影响因子:1.6
- 作者:Yi-Zhi HuangYi-Zhi Huang
- 通讯作者:Yi-Zhi HuangYi-Zhi Huang
共 22 条
- 1
- 2
- 3
- 4
- 5
Yi-Zhi Huang的其他基金
International workshop "Conformal field theories and tensor categories".
国际研讨会“共形场论和张量类别”。
- 批准号:11052791105279
- 财政年份:2011
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:Standard GrantStandard Grant
US-Austria Workshop: Tensor Categories in Mathematics and Physics
美国-奥地利研讨会:数学和物理中的张量类别
- 批准号:04061980406198
- 财政年份:2004
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:Standard GrantStandard Grant
Mathematical Sciences: Vertex Operators Algebras, Conformal Field Theories, and Geometry
数学科学:顶点算子代数、共形场论和几何
- 批准号:96229619622961
- 财政年份:1996
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:Standard GrantStandard Grant
Mathematical Sciences: Geometric Structure of Conformal Field Theory
数学科学:共形场论的几何结构
- 批准号:95961019596101
- 财政年份:1994
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:Standard GrantStandard Grant
Mathematical Sciences: Geometric Structure of Conformal Field Theory
数学科学:共形场论的几何结构
- 批准号:93010209301020
- 财政年份:1993
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:Standard GrantStandard Grant
Mathematical Sciences: Geometric Structure of Conformal Field Theories
数学科学:共形场论的几何结构
- 批准号:91045199104519
- 财政年份:1991
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
宽视角大尺寸裸眼真三维视频显示技术研究
- 批准号:62335002
- 批准年份:2023
- 资助金额:241 万元
- 项目类别:重点项目
原子尺寸大失配诱导的有序-无序结构设计与热电性能调控
- 批准号:52372209
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
非均匀衰退场景下大尺寸锂离子动力电池优化充电研究
- 批准号:62303278
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于细胞壁组分溶解-再生的木材强化及尺寸稳定性提升机制
- 批准号:32371790
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
针对大尺寸样品超分辨成像的关键问题研究
- 批准号:62375116
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:RGPIN-2018-04122RGPIN-2018-04122
- 财政年份:2022
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Refinement of the three-dimensional analysis of the plastic deformation of rocks: improvement of the pre-existing two methods
岩石塑性变形三维分析的精细化:现有两种方法的改进
- 批准号:22K0375622K03756
- 财政年份:2022
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:RGPIN-2018-04122RGPIN-2018-04122
- 财政年份:2021
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Topological and conformal interfaces in two-dimensional quantum field theories
二维量子场论中的拓扑和共形界面
- 批准号:26165982616598
- 财政年份:2021
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:StudentshipStudentship
CAREER: Liouville Quantum Gravity, Two-Dimensional Random Geometry, and Conformal Field Theory
职业:刘维尔量子引力、二维随机几何和共形场论
- 批准号:20465142046514
- 财政年份:2021
- 资助金额:$ 27.55万$ 27.55万
- 项目类别:Continuing GrantContinuing Grant