GOALI: Mechanics of Permeation Barriers in Flexible Electronics

GOALI:柔性电子产品渗透屏障的力学

基本信息

  • 批准号:
    0856540
  • 负责人:
  • 金额:
    $ 30.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-05-01 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

The objective of this research is to investigate the durability and hermeticity of multilayer organic/inorganic permeation barriers in flexible electronics under large mechanical deformation and environmental moisture attack. Flexible electronics is being developed for an exciting array of applications, such as paper-like displays and organic light emitting diodes. The functional organic materials used in flexible devices are extremely vulnerable to moisture, thus result in a sharply limited device lifetime to a grand challenge to the future success of flexible electronics technology. Multilayer organic/inorganic permeation barriers are emerging as a promising solution to the stringent barrier requirement of flexible electronics. The mechanical failure of the multilayer permeation barriers, however, could be fatal to the barrier performance. To date, the mechanical durability of multilayer permeation barriers is largely unexplored. In this project, a collaborative research framework (from modeling and experiments to design) will be built to explore the yet-unexplored mechanisms that govern the mechanical durability and barrier performance of multilayer permeation barriers. By advancing the understanding of permeation barrier technology, this project will pave the way for the development of viable flexible electronics, whose widespread use addresses a wide range of societal needs. The proposed program also includes integrated outreach and education efforts. The summer internship at the industry partner provides the students a unique opportunity to interact with multidisciplinary industrial experts on a cutting-edge research topic. Furthermore, by disseminating research findings via iMechanica.org and macroelectronics.org, the project will also increase public awareness about flexible electronics technology.
本研究的目的是研究柔性电子器件中多层有机/无机渗透屏障在大机械变形和环境湿气侵袭下的耐久性和气密性。 柔性电子产品正在开发用于一系列令人兴奋的应用,例如纸质显示器和有机发光二极管。柔性器件中使用的功能有机材料极易受潮,从而导致器件寿命急剧受限,这对柔性电子技术未来的成功构成了巨大挑战。多层有机/无机渗透屏障正在成为满足柔性电子产品严格屏障要求的有前途的解决方案。然而,多层渗透屏障的机械故障可能对屏障性能造成致命影响。迄今为止,多层渗透屏障的机械耐久性很大程度上尚未得到探索。在该项目中,将建立一个协作研究框架(从建模、实验到设计),以探索尚未探索的控制多层渗透屏障的机械耐久性和屏障性能的机制。通过增进对渗透屏障技术的理解,该项目将为开发可行的柔性电子产品铺平道路,其广泛使用可满足广泛的社会需求。拟议的计划还包括综合外展和教育工作。行业合作伙伴的暑期实习为学生提供了与多学科行业专家就前沿研究课题进行互动的独特机会。 此外,通过 iMechanica.org 和 Macro electronics.org 传播研究成果,该项目还将提高公众对柔性电子技术的认识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Teng Li其他文献

STRESS-MODULATED DRIVING FORCE FOR LITHIATION REACTION IN HOLLOW NANO-SPHERICAL ANODES
空心纳米球形阳极锂化反应的应力调节驱动力
  • DOI:
    10.1557/opl.2014.247
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Jia;Teng Li
  • 通讯作者:
    Teng Li
Geometrical Design and Hydraulic Feasibility of Inner-Reinforced Girders in Hydropower Bifurcations
水电分叉处内筋梁的几何设计及水力可行性
  • DOI:
    10.1007/s12209-017-0063-0
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhimin Zhang;Hegao Wu;Yang Wang;Qiling Zhang;Teng Li
  • 通讯作者:
    Teng Li
Leadership empowerment behavior and employee referrals: chain mediation of perceived challenge stress and employee experience
领导授权行为和员工推荐:感知挑战压力和员工体验的链式中介
  • DOI:
    10.1108/cms-11-2023-0585
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Teng Li;Lingfeng Yi
  • 通讯作者:
    Lingfeng Yi
Efficient Mobile Robot Exploration with Gaussian Markov Random Fields in 3D Environments
3D 环境中高斯马尔可夫随机场的高效移动机器人探索
Ab Initio Study of Structural and Optical Properties of SrTi0.5Nb0.5O3
SrTi0.5Nb0.5O3 结构和光学性能的从头算研究
  • DOI:
    10.4028/www.scientific.net/amr.846-847.1935
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Pan;Teng Li;Shi Liang Yang;Y. Liu
  • 通讯作者:
    Y. Liu

Teng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Teng Li', 18)}}的其他基金

I-Corps: Sustainable Atmospheric Water Harvesting
I-Corps:可持续的大气集水
  • 批准号:
    2330013
  • 财政年份:
    2023
  • 资助金额:
    $ 30.88万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator: Re-Think Nature for Innovative Solutions to Grand Challenges
NSF 融合加速器:重新思考自然,寻找应对重大挑战的创新解决方案
  • 批准号:
    2035307
  • 财政年份:
    2020
  • 资助金额:
    $ 30.88万
  • 项目类别:
    Standard Grant
Mechanics of Bioderived-Cellulose-Based Ultra-Strong and Ultra-Tough Materials
生物纤维素基超强超韧材料的力学
  • 批准号:
    1936452
  • 财政年份:
    2020
  • 资助金额:
    $ 30.88万
  • 项目类别:
    Standard Grant
The Science Underpinning Anomalous Scaling Laws of Strength and Toughness in Nanocellulose Materials
支持纳米纤维素材料强度和韧性异常缩放定律的科学
  • 批准号:
    1362256
  • 财政年份:
    2014
  • 资助金额:
    $ 30.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Measurements and Implications of Graphene Adhesion - A Coherent Study via Experiments and Modeling
合作研究:石墨烯粘附力的测量和影响 - 通过实验和建模进行的连贯研究
  • 批准号:
    1129826
  • 财政年份:
    2011
  • 资助金额:
    $ 30.88万
  • 项目类别:
    Standard Grant
Graphene-based Ultrasensitive Nanostructures
基于石墨烯的超灵敏纳米结构
  • 批准号:
    1069076
  • 财政年份:
    2011
  • 资助金额:
    $ 30.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the Reliability of Nano Ceramic Films on Polymer Substrates: A Mechanistic Study
合作研究:破译聚合物基底上纳米陶瓷薄膜的可靠性:机理研究
  • 批准号:
    0928278
  • 财政年份:
    2009
  • 资助金额:
    $ 30.88万
  • 项目类别:
    Standard Grant

相似国自然基金

基于细观因子时变效应的ECC长期力学性能与渗透性能研究
  • 批准号:
    52378221
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
真三向应力下深部页岩油气储层支撑剂力学行为与支撑裂隙渗透率时效演化机制
  • 批准号:
    52374084
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
渗透吸力对盐渍黏土水力-力学特性的影响及其作用机理研究
  • 批准号:
    12362032
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
动态渗透压作用下滑坡碎石土宏细观力学特性及滑坡变形破坏模式研究
  • 批准号:
    42277169
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
动态渗透压作用下滑坡碎石土宏细观力学特性及滑坡变形破坏模式研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Membrane permeation mechanism mediated by large pore channels contributed by phospholipids
磷脂提供的大孔通道介导的膜渗透机制
  • 批准号:
    23H02418
  • 财政年份:
    2023
  • 资助金额:
    $ 30.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Permeation and Gating Mechanisms of Mechanosensitive PIEZO channels
机械敏感压电通道的渗透和门控机制
  • 批准号:
    10364203
  • 财政年份:
    2021
  • 资助金额:
    $ 30.88万
  • 项目类别:
Permeation and Gating Mechanisms of Mechanosensitive PIEZO channels
机械敏感压电通道的渗透和门控机制
  • 批准号:
    10654863
  • 财政年份:
    2021
  • 资助金额:
    $ 30.88万
  • 项目类别:
Permeation and Gating Mechanisms of Mechanosensitive PIEZO channels
机械敏感压电通道的渗透和门控机制
  • 批准号:
    10665200
  • 财政年份:
    2021
  • 资助金额:
    $ 30.88万
  • 项目类别:
Understanding of direct permeation of nanoparticle across cell membrane by means of artificial cell membrane system and molecular dynamics simulation
通过人工细胞膜系统和分子动力学模拟了解纳米粒子直接渗透细胞膜
  • 批准号:
    18H03536
  • 财政年份:
    2018
  • 资助金额:
    $ 30.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了