Complex Analysis, Potential Theory and Applications

复分析、势理论及应用

基本信息

  • 批准号:
    0855597
  • 负责人:
  • 金额:
    $ 12.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

The intellectual thrust of the projectfocuses on problems related to a recent solution by methods of complex analysis of a problem in astrophysics concerning the maximal number of images one may observe when a light from a distant object is deflected by n co-planar masses before reaching the observer. The PI and G. Neumann proved a conjecture by the astrophysicist S. Rhie that this number depends linearly, rather than quadratically; on n. (This result reduces substantially the number of relevant calculations for large n.) The PI, jointly with his student E. Lundberg, is planning to extend these ideas to a more realistic situation when the lensing effect is produced by an elliptical galaxy with an isothermal mass distribution of gas. Another main theme of this project develops further recent results of the PI obtained jointly with Bell, Ebenfelt and Shapiro, and, more recently, by the PI's student Lundberg, dealing with algebraic properties of solutions of the boundary value problems in potential theory. One of the main novel tools being developed in the project is the extension to the complex space of a notion of a "lightning bolt" pioneered by Arnold and Kolmogorov in the 1950s in their solution of the 13th Hilbert problem on superpositions of functions. Complex lightning bolts turn out to be precisely the obstacles preventing global analytic continuation of harmonic functions in two-dimensional complex space. The project also addresses several other fundamental long standing questions in complex analysis and potential theory. A large part of the project has a strong interdisciplinary flavor. This research continues a deeper study of some problems in astrophysics, more precisely, in gravitational lensing. In particular, the project deals with the problems that have arisen from the PI?s recent work with the astrophysicists Fassnacht and Keeton. The PI is continuing popularization of some aspects of his research and is planning several articles directed at a wide audience. The PI has given in the past and will continue to give popular lectures for undergraduates based on the research topics of the project. The PI is working with a local high school student (M. Rabinovich), who was recently selected as a 2009 Intel Talent Search Competition finalist. The PI will be continuing his efforts in dissemination of his research and, at the same time, continuing to supervise Ph D students. The PI now has two students: one advanced and one in his second year. A beginning female graduate student has recently expressed interest in working with the PI on some of the topics in the project. The PI continues his fruitful collaborations on some parts of the project with researchers from underrepresented groups. The PI is also actively involved at various levels in organizing multiple events (conferences, workshops, etc.), on the research topics discussed in the proposal and in bringing together mathematicians and physicists in order to uphold the strong momentum of collaboration on several problems in this project.
该项目的智力主旨集中于与最近通过复杂分析方法解决天体物理学问题相关的问题,该问题涉及当来自远处物体的光在到达物体之前被 n 个共面质量偏转时,人们可以观察到的图像的最大数量。观察者。 PI 和 G. Neumann 证明了天体物理学家 S. Rhie 的猜想,即这个数字与线性相关,而不是二次相关;在 n. (这个结果大大减少了大 n 的相关计算数量。)PI 与他的学生 E. Lundberg 一起,计划将这些想法扩展到更现实的情况,当透镜效应是由具有等温线的椭圆星系产生时气体的质量分布。该项目的另一个主题进一步发展了 PI 与 Bell、Ebenfelt 和 Shapiro 联合​​获得的最新成果,以及最近由 PI 的学生 Lundberg 获得的成果,处理势论中边值问题解的代数性质。该项目中开发的主要新颖工具之一是将阿诺德和柯尔莫哥洛夫在 20 世纪 50 年代解决函数叠加的第 13 希尔伯特问题时首创的“闪电”概念扩展到复杂空间。事实证明,复杂闪电恰恰是二维复空间中调和函数全局解析连续性的障碍。该项目还解决了复杂分析和势理论中其他几个长期存在的基本问题。该项目的很大一部分具有浓厚的跨学科气息。这项研究继续对天体物理学,更准确地说,引力透镜中的一些问题进行更深入的研究。特别是,该项目解决了 PI 最近与天体物理学家 Fassnacht 和 Keeton 合作中出现的问题。 PI 正在继续普及他的研究的某些方面,并计划发表几篇针对广大受众的文章。 PI过去已经做过并将继续根据项目的研究主题为本科生进行热门讲座。 PI 正在与当地一名高中生 (M. Rabinovich) 合作,他最近被选为 2009 年英特尔人才搜寻大赛决赛入围者。 PI将继续努力传播他的研究成果,同时继续指导博士生。 PI 现在有两名学生:一名是高年级学生,一名是二年级学生。一名新晋女研究生最近表示有兴趣与 PI 就该项目的某些主题进行合作。 PI 继续与来自代表性不足群体的研究人员在该项目的某些部分进行富有成效的合作。 PI还积极参与组织多个活动(会议、研讨会等),讨论提案中讨论的研究主题,并将数学家和物理学家聚集在一起,以保持在多个问题上合作的强劲势头。这个项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmitry Khavinson其他文献

Dmitry Khavinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dmitry Khavinson', 18)}}的其他基金

Conference: Canada - US summer school on spectral theory and applications; Quebec City, Canada; July 4-16, 2016
会议:加拿大-美国光谱理论与应用暑期学校;
  • 批准号:
    1603527
  • 财政年份:
    2016
  • 资助金额:
    $ 12.23万
  • 项目类别:
    Standard Grant
Israel - USA Conference on Complex Analysis and Dynamical Systems VI
以色列-美国复杂分析和动力系统会议 VI
  • 批准号:
    1301577
  • 财政年份:
    2013
  • 资助金额:
    $ 12.23万
  • 项目类别:
    Standard Grant
US-Chile Workshop: Complex Analysis and Mathematical Physics; Pucon, Chile, December, 2010
美国-智利研讨会:复分析和数学物理;
  • 批准号:
    1019602
  • 财政年份:
    2010
  • 资助金额:
    $ 12.23万
  • 项目类别:
    Standard Grant
Joint Norway-USA Workshop in Complex Analysis and Mathematical Physics
挪威-美国复分析和数学物理联合研讨会
  • 批准号:
    0753705
  • 财政年份:
    2008
  • 资助金额:
    $ 12.23万
  • 项目类别:
    Standard Grant
A Few Topics in Classical Analysis
经典分析的几个话题
  • 批准号:
    0701873
  • 财政年份:
    2006
  • 资助金额:
    $ 12.23万
  • 项目类别:
    Standard Grant
A Few Topics in Classical Analysis
经典分析的几个话题
  • 批准号:
    0139008
  • 财政年份:
    2002
  • 资助金额:
    $ 12.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex Analysis and Potential Theory
数学科学:复分析与势论
  • 批准号:
    9022938
  • 财政年份:
    1991
  • 资助金额:
    $ 12.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Singularities of Harmonic Function inCn
数学科学:Cn 调和函数的奇异性
  • 批准号:
    8819569
  • 财政年份:
    1989
  • 资助金额:
    $ 12.23万
  • 项目类别:
    Standard Grant
Conference on Mathematical Sciences: The Schwarz Function, Quadrature Domains and Cauchy Problem for the Laplace Equation, April 7-9, Fayetteville, Arkansas
数学科学会议:拉普拉斯方程的施瓦茨函数、求积域和柯西问题,4 月 7 日至 9 日,阿肯色州费耶特维尔
  • 批准号:
    8717883
  • 财政年份:
    1988
  • 资助金额:
    $ 12.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symmetry Problems in Complex Analysisand Potential Theory
数学科学:复分析中的对称问题和势论
  • 批准号:
    8618755
  • 财政年份:
    1987
  • 资助金额:
    $ 12.23万
  • 项目类别:
    Standard Grant

相似国自然基金

中国外来入侵植物优先管理框架研究:分布格局、驱动因素与潜在分布区的综合分析
  • 批准号:
    32372565
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于潜在结果框架和高维脑影像数据的因果中介分析理论和方法学研究
  • 批准号:
    82304241
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于线性规划法和通用发生函数法的含潜在脆性破坏构件的钢桁架结构可靠度分析方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于联合潜在类别模型的衰弱轨迹与不良事件的关联分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identifying epigenetic factors in control of epidermal stem cell longevity in the adult skin
识别控制成人皮肤表皮干细胞寿命的表观遗传因素
  • 批准号:
    10723212
  • 财政年份:
    2023
  • 资助金额:
    $ 12.23万
  • 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
  • 批准号:
    10726763
  • 财政年份:
    2023
  • 资助金额:
    $ 12.23万
  • 项目类别:
Mechanistic studies of the genetic contribution of desmoplakin to pulmonary fibrosis in alveolar type 2 cells
桥粒斑蛋白对肺泡2型细胞肺纤维化的遗传贡献机制研究
  • 批准号:
    10736228
  • 财政年份:
    2023
  • 资助金额:
    $ 12.23万
  • 项目类别:
Decay accelerating factor (CD55) protects against lectin pathway-mediated AT2 cell dysfunction in cigarette smoke-induced emphysema
衰变加速因子 (CD55) 可防止香烟烟雾引起的肺气肿中凝集素途径介导的 AT2 细胞功能障碍
  • 批准号:
    10737359
  • 财政年份:
    2023
  • 资助金额:
    $ 12.23万
  • 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
  • 批准号:
    10573109
  • 财政年份:
    2023
  • 资助金额:
    $ 12.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了