FRG: Collaborative Research: Algebraic Dynamics

FRG:合作研究:代数动力学

基本信息

  • 批准号:
    0854746
  • 负责人:
  • 金额:
    $ 19.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Algebraic dynamics is the study of problems that occur on the interface of number theory, algebraic geometry, and discrete dynamical systems. Orbits of points under iteration of a self-map of a variety correspond to finitely generated subgroups of abelian varieties, and there are natural (mostly conjectural) algebraic dynamical analogues of famous theorems in arithmetic geometry regarding the existence and distribution of rational, integral, and torsion points on varieties.The investigators will study these algbebraic dynamical questions using tools drawn from number theory, algebraic geometry, Diophantine approximation, and model theory. They will also study associated moduli problems and will investigate geometric and arithmetic properties of dynamical moduli spaces and dynamical modular curves.Discrete dynamics studies what happens when a function is repeatedly applied to an initial point. For some points, the behavior is well-behaved, while for other points the iterates move around in a chaotic fashion. Algebraic dynamics is an exciting new area of research that amalgamates dynamical systems with algebra and number theory. The investigators will study number theoretic properties of the orbit of iterates when the initial point is an integer or a rational number and the function is given by polynomials. In particular, they will study (mostly still conjectural) dynamical analogues of many famous results in number theory that describe the distribution of integer and rational solutions to systems of polynomial equations.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Lucien Szpiro其他文献

Almost Newton, sometimes Lattès
  • DOI:
    10.1016/j.jnt.2013.10.004
    10.1016/j.jnt.2013.10.004
  • 发表时间:
    2014-03-01
    2014-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin Hutz;Lucien Szpiro
    Benjamin Hutz;Lucien Szpiro
  • 通讯作者:
    Lucien Szpiro
    Lucien Szpiro
Semi-stable reduction implies minimality of the resultant
  • DOI:
    10.1016/j.jalgebra.2013.09.008
    10.1016/j.jalgebra.2013.09.008
  • 发表时间:
    2014-01-01
    2014-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lucien Szpiro;Michael Tepper;Phillip Williams
    Lucien Szpiro;Michael Tepper;Phillip Williams
  • 通讯作者:
    Phillip Williams
    Phillip Williams
共 2 条
  • 1
前往

Lucien Szpiro的其他基金

COLLABORATIVE RESEARCH: EMSW21-RTG: JOINT COLUMBIA-CUNY-NYU RESEARCH TRAINING GROUP IN NUMBER THEORY
合作研究:EMSW21-RTG:哥伦比亚大学-纽约市立大学-纽约大学联合数论研究培训小组
  • 批准号:
    0739346
    0739346
  • 财政年份:
    2008
  • 资助金额:
    $ 19.21万
    $ 19.21万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Arithmetic Geometry of Diophantine Problems
丢番图问题的算术几何
  • 批准号:
    0071921
    0071921
  • 财政年份:
    2000
  • 资助金额:
    $ 19.21万
    $ 19.21万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
    $ 19.21万
  • 项目类别:
    Continuing Grant
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
    $ 19.21万
  • 项目类别:
    Standard Grant
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
    $ 19.21万
  • 项目类别:
    Continuing Grant
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
    $ 19.21万
  • 项目类别:
    Continuing Grant
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
    $ 19.21万
  • 项目类别:
    Standard Grant
    Standard Grant