CAREER: Linear Matrix Inequality Representations in Optimization

职业:优化中的线性矩阵不等式表示

基本信息

  • 批准号:
    0844775
  • 负责人:
  • 金额:
    $ 50.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This proposal investigates the linear matrix inequality representations of convex sets and their applications in optimization problems. The work involves different kinds of mathematical tools like algebraic geometry, convex analysis, differential geometry, numerical analysis, optimization theory, and real algebra. The investigator not only studies the fundamental mathematics on the scope and depth of linear matrix inequality representability, but also work on designing new algorithms and software solving hard optimization problems.The following five main topics will be focused in this project: linear matrix inequality representations of rigid convex sets, semidefinite programming representations of convex semialgebraic sets, second order cone programming representations of convex semialgebraic sets, semidefinite programming representations of nonnegative multivariate polynomials, and linear matrix inequality methods for solving nonconvex optimization problems and polynomial systems. A basic problem of science and engineering is finding a global minimum of a function of many variables. As a metaphor one might think of a complicated terrain of mountains and valleys which stretches for hundreds of miles and one must find the lowest point in the lowest valley. The difficulty is that one can not see the map and one only knows a mathematical formula for the terrain and in most applications (like electronics, networks, biochemistry) there are many variables instead of three. Many algorithms will find the lowest point of a particular valley but none are known which effectively find the lowest valley itself. This NSF research is to develop global optimization algorithms for various situations. One is the class of problems where the data is given by polynomials. Another is to determine and parameterize convex problems very efficiently; in convex situations one has only one valley. These pursuits require integration of techniques from numerical mathematics, real and complex algebraic geometry, convex analysis, differential geometry, numerical analysis, and optimization theory, a wide range of mathematics. Jiawang Nie has personal experience with several areas of applications including sensor networks and systems control and this informs his mathematics and techniques. Other important features of this proposal are integrating research and education, developing new mathematical courses, training undergraduate and graduate students on using the latest mathematical tools, advising postdoctoral scholars on how to create novel research results.
该提案研究了凸集的线性矩阵不等式表示及其在优化问题中的应用。这项工作涉及不同类型的数学工具,如代数几何、凸分析、微分几何、数值分析、优化理论和实代数。研究者不仅研究线性矩阵不等式可表示性的范围和深度的基础数学,而且还致力于设计解决硬优化问题的新算法和软件。本项目将重点关注以下五个主题:刚性凸集、凸半代数集的半定规划表示、凸半代数集的二阶锥规划表示、非负多元多项式的半定规划表示以及求解非凸优化问题的线性矩阵不等式方法和多项式系统。 科学和工程的一个基本问题是找到多个变量的函数的全局最小值。作为一个比喻,人们可能会想到一个复杂的山脉和山谷地形,绵延数百英里,必须在最低的山谷中找到最低点。困难在于,人们看不到地图,只知道地形的数学公式,并且在大多数应用(如电子、网络、生物化学)中,存在许多变量而不是三个。许多算法都会找到特定山谷的最低点,但没有一个算法能够有效地找到最低山谷本身。 NSF 的这项研究旨在开发针对各种情况的全局优化算法。一类是数据由多项式给出的问题。另一个是非常有效地确定和参数化凸问题;在凸的情况下,只有一个谷。这些追求需要整合数值数学、实数和复数代数几何、凸分析、微分几何、数值分析和优化理论等广泛的数学技术。聂家旺在传感器网络和系统控制等多个应用领域拥有个人经验,这为他的数学和技术提供了信息。该提案的其他重要特点包括整合研究和教育、开发新的数学课程、培训本科生和研究生使用最新的数学工具、为博士后学者如何创造新颖的研究成果提供建议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiawang Nie其他文献

A Characterization for Tightness of the Sparse Moment-SOS Hierarchy
稀疏矩-SOS层次结构的紧度刻画
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiawang Nie;Zheng Qu;Xindong Tang;Linghao Zhang
  • 通讯作者:
    Linghao Zhang
Nearly Low Rank Tensors and Their Approximations
Minimum Ellipsoid Bounds for Solutions of Polynomial Systems via Sum of Squares
通过平方和求多项式系统解的最小椭球界
  • DOI:
    10.1007/s10898-005-2099-2
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Jiawang Nie;J. Demmel
  • 通讯作者:
    J. Demmel
Linear optimization with cones of moments and nonnegative polynomials
  • DOI:
    10.1007/s10107-014-0797-6
  • 发表时间:
    2013-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jiawang Nie
  • 通讯作者:
    Jiawang Nie
Shape Optimization of Transfer Functions
传递函数的形状优化
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiawang Nie;J. Demmel
  • 通讯作者:
    J. Demmel

Jiawang Nie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiawang Nie', 18)}}的其他基金

Lagrange Multiplier Expression Methods for Optimization
优化的拉格朗日乘子表达方法
  • 批准号:
    2110780
  • 财政年份:
    2021
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Standard Grant
Computational Methods for Symmetric Tensor Problems
对称张量问题的计算方法
  • 批准号:
    1619973
  • 财政年份:
    2016
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Standard Grant
Semidefinite Programming Methods for Moment and Optimization Problems
矩量和优化问题的半定规划方法
  • 批准号:
    1417985
  • 财政年份:
    2014
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Standard Grant

相似国自然基金

基于时变耦合矩阵不等式的不确定非线性系统全局自适应量化控制研究
  • 批准号:
    62373131
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于随机矩阵理论的大维非线性结构总体协方差矩阵推断研究
  • 批准号:
    12301351
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
矩阵非线性Schrödinger类系统的简并非线性波及其相互作用机制研究
  • 批准号:
    12305001
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大规模非线性病态数据的矩阵恢复模型与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
深度学习中的低秩矩阵优化的模型及算法研究
  • 批准号:
    12126348
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Investigating Angiogenic Mediators as Biomarkers and Targets for Rescuing Small Vessel Disease in a Model of VCID
研究血管生成介质作为 VCID 模型中挽救小血管疾病的生物标志物和靶标
  • 批准号:
    10402803
  • 财政年份:
    2021
  • 资助金额:
    $ 50.04万
  • 项目类别:
Investigating Angiogenic Mediators as Biomarkers and Targets for Rescuing Small Vessel Disease in a Model of VCID
研究血管生成介质作为 VCID 模型中挽救小血管疾病的生物标志物和靶标
  • 批准号:
    10618978
  • 财政年份:
    2021
  • 资助金额:
    $ 50.04万
  • 项目类别:
Role of Liver Fibrosis in Cognitive Impairment and Dementia
肝纤维化在认知障碍和痴呆中的作用
  • 批准号:
    10456884
  • 财政年份:
    2021
  • 资助金额:
    $ 50.04万
  • 项目类别:
Role of Liver Fibrosis in Cognitive Impairment and Dementia
肝纤维化在认知障碍和痴呆中的作用
  • 批准号:
    10667547
  • 财政年份:
    2021
  • 资助金额:
    $ 50.04万
  • 项目类别:
Investigating Angiogenic Mediators as Biomarkers and Targets for Rescuing Small Vessel Disease in a Model of VCID
研究血管生成介质作为 VCID 模型中挽救小血管疾病的生物标志物和靶标
  • 批准号:
    10230371
  • 财政年份:
    2021
  • 资助金额:
    $ 50.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了