Collaborative Research: CDI-Type II: Discovery of Succinct Dynamical Relationships in Large-Scale Biological Data Sets

合作研究:CDI-Type II:大规模生物数据集中简洁动态关系的发现

基本信息

  • 批准号:
    0836656
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Collaborative Research:0836656 (Peter Doerschuk, Cornell University)0836649 (Bud Mishra, NYU)0836720 (Sanjoy Mitter and Emery Brown, MIT)Title: Discovery of Succinct Dynamical Relationships in Large-Scale Biological Data SetsABSTRACT:Many types of information in neuroscience and molecular biology can be described as a set of measurements taken repeatedly as some index changes its value. In some situations, such as transcriptomic data measuring gene activities, the index is time while in other situations, such as in genetics association study, the index is position in a genomic DNA sequence and, in any case, the complete collection of data is referred to as a time series. Inference is the process of taking such time series, probably corrupted by errors, and computing answers to the following sorts of questions: (1) What is the system that generated the time series? For instance, if the system is known to be a differential equation of a specific type, what are the parameter values in the differential equation? (2) Given a completely specified system and a time series, did that system generate that time series? For instance, if a biologist has hypothesized a system that describes gene expression for a particular set of genes and then measures expression data, is the data compatible with the system, or equivalently, the hypothesis? (3) Given two time series, were they generated by the same system? For instance, if the pattern of nerve firings in a neural system is recorded in two different experimental situations, is the pattern the same or is it different? The four Principal Investigators are focused on three different biological application domains at three different biological scales: (1) the phenotyping of animal and human ethanol-consumption behavior (whole organism scale), (2) the pattern of action potentials measured on ensembles of neurons (cell-population scale), and (3) the time course of gene expressions as governed by the regulatory circuits of the cell (cellular scale). The types of challenges that are encountered in these applications include the following characteristics: the information is distributed over long periods of time rather than concentrated in time; the systems include delays and feedback paths; and the systems are highly nonlinear, including switching behavior, rather than linear. The major methodologies that will be developed and combined to solve inference problems in these application areas are: (a) information theory and stochastic control, (b) multi-scale approaches to learning the geometry of the data, and (c) computer algebra and symbolic computation. For example, to deal with the presence of delay and feedback in neuroscience systems, especially in the context of the interaction between information and stochastic control, requires a fundamental rethinking of classical information theory as it is employed in technology-based communication systems.As the cost of computing decreases, computing becomes increasingly pervasive. A major purpose of pervasive computing is the real-time collection of high-dimensional time series of very diverse types of data including biological, medical, financial, communication systems status, power systems status, etc. The project will provide computational algorithms and software to analyze this data in more sophisticated ways and thereby extract more sophisticated information. Action taken upon this more sophisticated information, e.g., personalized medicine based on individualized genomic information or more accurate and flexible control of power systems thereby avoiding blackouts, will have important human and economic benefits to society. An important component of the project is educational, e.g., three graduate students working on the project will receive tuition and stipend and an unrestricted number of undergraduates will participate through a variety of ways, e.g., project courses. By attracting talented students to science and technology and providing challenging research experiences, the project will have important work force benefits to society.
合作研究:0836656(Peter Doerschuk,康奈尔大学)0836649(Bud Mishra,纽约大学)0836720(Sanjoy Mitter 和 Emery Brown,麻省理工学院)标题:在大规模生物数据集中发现简洁的动态关系摘要:神经科学和神经科学中的许多类型的信息分子生物学可以描述为随着某些指标改变其值而重复进行的一组测量。 在某些情况下,例如测量基因活性的转录组数据,索引是时间,而在其他情况下,例如在遗传学关联研究中,索引是基因组DNA序列中的位置,并且在任何情况下,都会引用完整的数据集合作为一个时间序列。 推理是采用可能因错误而损坏的此类时间序列并计算以下问题的答案的过程:(1)生成时间序列的系统是什么? 例如,如果已知系统是特定类型的微分方程,那么微分方程中的参数值是多少? (2) 给定一个完全指定的系统和一个时间序列,该系统是否生成该时间序列? 例如,如果生物学家假设了一个系统,该系统描述一组特定基因的基因表达,然后测量表达数据,那么该数据是否与该系统兼容,或者是否与该假设兼容? (3) 给定两个时间序列,它们是由同一个系统生成的吗? 例如,如果在两个不同的实验情况下记录神经系统中的神经放电模式,那么该模式是相同还是不同? 四位首席研究员专注于三个不同生物尺度的三个不同生物应用领域:(1) 动物和人类乙醇消耗行为的表型(整个生物体尺度),(2) 在神经元集合上测量的动作电位模式(细胞群体规模),以及(3)由细胞调节回路控制的基因表达的时间过程(细胞规模)。 这些应用中遇到的挑战类型包括以下特点:信息在较长时间内分布而不是在时间上集中;该系统包括延迟和反馈路径;而且系统是高度非线性的,包括开关行为,而不是线性的。 将开发和组合以解决这些应用领域中的推理问题的主要方法是:(a)信息论和随机控制,(b)学习数据几何的多尺度方法,以及(c)计算机代数和符号计算。 例如,为了处理神经科学系统中存在的延迟和反馈,特别是在信息与随机控制之间相互作用的背景下,需要对经典信息论进行根本性的重新思考,因为它应用于基于技术的通信系统。计算成本下降,计算变得越来越普遍。 普适计算的一个主要目的是实时收集各种类型数据的高维时间序列,包括生物、医学、金融、通信系统状态、电力系统状态等。该项目将提供计算算法和软件以更复杂的方式分析这些数据,从而提取更复杂的信息。 根据这些更复杂的信息采取的行动,例如基于个性化基因组信息的个性化医疗或更准确和灵活的电力系统控制,从而避免停电,将为社会带来重要的人类和经济效益。 该项目的一个重要组成部分是教育,例如,从事该项目的三名研究生将获得学费和津贴,而数量不受限制的本科生将通过各种方式参与,例如项目课程。 通过吸引有才华的学生学习科学技术并提供具有挑战性的研究经验,该项目将为社会带来重要的劳动力效益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Doerschuk其他文献

Feature-Based Machine Learning for Predicting Resistances in Printed Electronics
基于特征的机器学习用于预测印刷电子产品中的电阻

Peter Doerschuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Doerschuk', 18)}}的其他基金

AF:CIF:Small:Computational structural biology: Reconstruction and understanding for heterogeneous biological macro molecular complexes based on electron microscopy images
AF:CIF:Small:计算结构生物学:基于电子显微镜图像的异质生物大分子复合物的重建和理解
  • 批准号:
    1217867
  • 财政年份:
    2012
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
ITR: Collaborative Research: New Approaches to Experimental Design and Statistical Analysis of Genomic and Structural Biologic Data from Multiple Sources
ITR:协作研究:多源基因组和结构生物学数据的实验设计和统计分析新方法
  • 批准号:
    0735297
  • 财政年份:
    2006
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research: New Approaches to Experimental Design and Statistical Analysis of Genomic and Structural Biologic Data from Multiple Sources
ITR:协作研究:多源基因组和结构生物学数据的实验设计和统计分析新方法
  • 批准号:
    0325544
  • 财政年份:
    2003
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Computation for Structural Biology: Tools to Enable Dynamic 3-D Reconstruction of Time-varying Viral Structures
结构生物学计算:实现时变病毒结构动态 3D 重建的工具
  • 批准号:
    0098156
  • 财政年份:
    2001
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
ITR/AP (BIO) Computational tools for determining the 3-D static and dynamic structure of viruses
ITR/AP (BIO) 用于确定病毒 3D 静态和动态结构的计算工具
  • 批准号:
    0112672
  • 财政年份:
    2001
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CISE Research Resources: Computer cluster to support computational biology and other nonlinear signal reconstruction and system design problems
CISE 研究资源:支持计算生物学和其他非线性信号重建和系统设计问题的计算机集群
  • 批准号:
    0130538
  • 财政年份:
    2001
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
KDI: Global Adaptive Optimization for Structural Biology anand Other Complex Signal Reconstruction, Pattern Recognition and System Design Problems
KDI:结构生物学和其他复杂信号重建、模式识别和系统设计问题的全局自适应优化
  • 批准号:
    9873139
  • 财政年份:
    1999
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
IGERT: Training Program on Therapeutic and Diagnostic devices
IGERT:治疗和诊断设备培训计划
  • 批准号:
    9972770
  • 财政年份:
    1999
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Joint 3-D Reconstruction from Cryo Electron Microscopy and Solution X-ray Scattering Data
利用冷冻电子显微镜和溶液 X 射线散射数据进行联合 3D 重建
  • 批准号:
    9630497
  • 财政年份:
    1997
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
3D Reconstruction of Icosahedral Viruses from X-ray Scattering Data
根据 X 射线散射数据 3D 重建二十面体病毒
  • 批准号:
    9513594
  • 财政年份:
    1996
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Donnan理论的非对称吸附ICP-CDI体系构建及其除盐机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道F.prausnitzii通过FXR对抗NF-κB抑制CDI炎症的机制研究
  • 批准号:
    81900472
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
院内艰难梭菌感染(CDI)快速一体化检测技术的研究
  • 批准号:
    61701176
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
卵黄抗体(IgY)对艰难梭菌感染的诊断、防治作用及机理研究
  • 批准号:
    81160051
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    地区科学基金项目
溶藻弧菌菌落相变关键基因cdgC的功能和调控机制研究
  • 批准号:
    30972273
  • 批准年份:
    2009
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目

相似海外基金

CDI-Type I: Collaborative Research: High-Dimensional Phase-Space Subdivisions for Seismic Imaging
CDI-Type I:协作研究:地震成像的高维相空间细分
  • 批准号:
    1327658
  • 财政年份:
    2013
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI Type II: Dynamics and Control of Cardiac Tissue
合作研究:CDI II 型:心脏组织的动力学和控制
  • 批准号:
    1341128
  • 财政年份:
    2012
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: First-Principles Based Control of Multi-Scale Meta-Material Assembly Processes
合作研究:CDI-Type II:基于第一原理的多尺度超材料组装过程控制
  • 批准号:
    1124648
  • 财政年份:
    2011
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI Type-1: A Computer Framework for Modeling Complex Pattern Formation
合作研究:CDI Type-1:复杂模式形成建模的计算机框架
  • 批准号:
    1124665
  • 财政年份:
    2011
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: Probing Complex Dynamics of Small Interfering RNA (siRNA) Transfection by Petascale Simulations and Network Analysis
合作研究:CDI-Type II:通过 Petascale 模拟和网络分析探索小干扰 RNA (siRNA) 转染的复杂动力学
  • 批准号:
    1124962
  • 财政年份:
    2011
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了