Rational points on varieties in families, and countable unions of varieties over countable fields
科内品种的有理点以及可数域内品种的可数并集
基本信息
- 批准号:0841321
- 负责人:
- 金额:$ 29.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will work on two projects connected with arithmeticgeometry. The first project is to study the existence of rationalpoints in algebraic families of varieties, and to build a library ofdiophantine subsets of the field of rational numbers, where adiophantine set in this context means the set of rational parametervalues for which the corresponding variety in a family has a rationalpoint. In particular, the investigator will explore families whosefibers are Chatelet surfaces or more complicated conic bundles, forwhich the Brauer-Manin obstruction produces interesting diophantinesets. A long-term goal of the first project is to construct a modelof the integers using diophantine sets, because this would disprove aconjecture of Mazur regarding topology of rational points andsimultaneously prove the undecidability of the problem of decidingwhether a multivariable polynomial equation has a rational solution.The second project is to study countable unions of subvarieties over acountable algebraically closed field, such as the field of algebraicnumbers, and in particular to prove that in naturally occurringsituations, there exists a closed point outside the countable union,as required for various constructions. Examples include the union ofrational curves in a non-uniruled variety, the moduli space locus ofabelian varieties isogenous to a Jacobian, the locus in the base of afamily of varieties where the Picard number of the fiber jumps, andunions of subvarieties arising from iteration of endomorphisms ofvarieties.Arithmetic geometry lies at the intersection of number theory andalgebraic geometry: like algebraic geometry, it studies the solutionsto multivariable polynomial equations, but it does so under thenumber-theoretic restriction that the coordinates of the solutions beintegers (whole numbers like -37) or rational numbers (fractions like-3/5) or perhaps elements of some other number system different fromthe traditional systems of real numbers or complex numbers. Suchquestions were studied for their intrinsic interest since the time ofthe ancient Greeks, and in the 20th century they found unforeseenapplications to cryptography and error-correcting codes. Theinvestigator's research focuses not on these applications, but on thefundamental questions underlying and surrounding them, such as thequestion of whether it is possible to write a computer program todecide whether an arbitrary multivariable polynomial equation has asolution in rational numbers. The research covered by this grant willstudy patterns in families of equations in the hope of deducing anegative answer, while also proving the existence of solutionssatisfying infinitely many constraints in a larger number system.
研究人员将研究两个与算术测量学相关的项目。 第一个项目是研究各种代数家族中理性点的存在,并构建理性数字领域的Diophantine子集的库,在这种情况下,Adiophantine设置为一组合理参数,该族人在一个家庭中相应的品种具有理性点。 特别是,调查员将探索其纤维是聊天室表面或更复杂的圆锥捆的家庭,因为Brauer-Manin障碍物会产生有趣的肉食。 A long-term goal of the first project is to construct a modelof the integers using diophantine sets, because this would disprove aconjecture of Mazur regarding topology of rational points andsimultaneously prove the undecidability of the problem of decidingwhether a multivariable polynomial equation has a rational solution.The second project is to study countable unions of subvarieties over acountable algebraically closed field, such as the field of代数数字,特别是为了证明在自然发生的情况下,有一个可数字结合以外的封闭点,如各种结构所需的所需。 示例包括在非固定品种中的融合曲线,模量空间的ofabelian品种对雅各布式是雅各比式的种类,在纤维跳跃的品种的基础上,纤维跳跃的数量,亚属理论的次数均可依次依赖于evaripessemoreties ofvaristies ofvaristies ceptriesties ceptripties。 Andalgebraic几何形状:像代数几何形状一样,它研究了解决方案多变量多项式方程式,但是在溶液的坐标(如-37)或合理数字(类似于3/5)或某些其他传统数字的元素中,解决方案的坐标(如-37)或合理数字的坐标(如-37)或可能的元素是相同数字或其他系统不同的元素,它确实如此。 自古希腊人时代以来,研究了这种问题,因为它们的内在兴趣。 The Investigator的研究不是关注这些应用程序,而是关注这些应用程序的基础和周围的问题,例如,是否有可能编写计算机程序todecide的疑问,是否有合理的多种多样性方程是否具有合理数量。 这项赠款涵盖的方程家族中的授予模式涵盖了,以期推断出适度的答案,同时也证明了解决方案的存在,在更大的数字系统中无限地限制了许多限制。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Introduction to Drinfeld modules
Drinfeld 模块简介
- DOI:10.1090/conm/779/15675
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Poonen, Bjorn
- 通讯作者:Poonen, Bjorn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bjorn Poonen其他文献
HEURISTICS FOR THE ARITHMETIC OF ELLIPTIC CURVES
椭圆曲线算术的启发式
- DOI:
10.1142/9789813272880_0060 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Bjorn Poonen - 通讯作者:
Bjorn Poonen
On constructing solutions to S-unit equations in Q ∞ ,ℓ
关于构造 Q ∞ ,ℓ 中 S 单位方程的解
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Maxim Li;Misheel Otgonbayar;Minh;Bjorn Poonen;Andrew Sutherland - 通讯作者:
Andrew Sutherland
Arithmetic and Diophantine Geometry
算术和丢番图几何
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Baker;Enrique Gonz´alez;Josep Gonz´alez;Bjorn Poonen - 通讯作者:
Bjorn Poonen
Bjorn Poonen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bjorn Poonen', 18)}}的其他基金
Conference: The Mordell conjecture 100 years later
会议:100年后的莫德尔猜想
- 批准号:
2420166 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
Integral points on stacks, hyperplane sections over finite fields, and vectors forming rational angles
堆栈上的积分点、有限域上的超平面截面以及形成有理角的向量
- 批准号:
2101040 - 财政年份:2021
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
Graduate Workshop in Algebraic Geometry for Women and Mathematicians of Minority Genders
女性和少数族裔数学家代数几何研究生研讨会
- 批准号:
1821177 - 财政年份:2018
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
Foliation Theory in Algebraic Geometry
代数几何中的叶层理论
- 批准号:
1339299 - 财政年份:2013
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
Arithmetic of Abelian Varieties in Families
族中阿贝尔簇的算术
- 批准号:
1204946 - 财政年份:2012
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
Random maximal isotropic subspaces and Selmer groups
随机最大各向同性子空间和 Selmer 群
- 批准号:
1069236 - 财政年份:2011
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
Rational points on varieties in families, and countable unions of varieties over countable fields
科内品种的有理点以及可数域内品种的可数并集
- 批准号:
0801263 - 财政年份:2008
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
Geometric constructions over finite fields, elementary equivalence of finitely generated fields, and rational points on varieties
有限域上的几何构造、有限生成域的基本等价以及簇上的有理点
- 批准号:
0301280 - 财政年份:2003
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
Computational Aspects of Hyperelliptic Curves
超椭圆曲线的计算方面
- 批准号:
9801104 - 财政年份:1998
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
相似国自然基金
中国小麦地方品种抗赤霉病主效新位点Qfhb.jaas-6B的精细定位与候选基因挖掘
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于GWAS和WGCNA策略的云南小麦地方品种成株期抗条锈病位点挖掘及候选基因鉴定
- 批准号:32160481
- 批准年份:2021
- 资助金额:35.00 万元
- 项目类别:地区科学基金项目
中国小麦地方品种抗赤霉病主效新位点Qfhb.jaas-6B的精细定位与候选基因挖掘
- 批准号:32101792
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
家蚕L位点斑纹遗传基础的系统解析及实用品种早期判性标记的直接创建
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于SNP标记的大凉山玉米地方品种资源的产量配合力分子靶点研究
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2021
- 资助金额:
$ 29.03万 - 项目类别:
Discovery Grants Program - Individual
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2020
- 资助金额:
$ 29.03万 - 项目类别:
Discovery Grants Program - Individual