CSR-PSCE, SM: MPI-PPA: Improving Efficiency of Large-Scale Clusters Through Statistical Performance Prediction
CSR-PSCE、SM:MPI-PPA:通过统计性能预测提高大规模集群的效率
基本信息
- 批准号:0834356
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops a system that improves parallel efficiency on large numbers of processors - up to tens or hundreds of thousands - without running a program at scale. This system is called MPI-PPA: MPI Performance Prediction and Advisement. MPI-PPA takes as input a scientific computing application along with the input variables, including the desired number of processors, p. With executions on fewer than p processors only - so that these executions will occur quickly - MPI-PPA will produce a list of program phases that are predicted to achieve poor scalability, allowing the programmer to quickly address and possibly re-implement these phases - as well as a prediction for the entire program run.MPI-PPA makes these predictions using statistical regression to develop a prediction function that can be used with any number of processors. MPI-PPA will not require significant program comprehension, an important aspect when considering that computational scientists are typically experts in their scientific domain and not in computer science. The approach of MPI-PPA involves heavy reliance on statistical techniques, so the work in this project will be interdisciplinary between computer science (the PI) and statistics (the co-PI). MPI-PPA will be validated by using benchmark suites such as NAS and ASCI codes, along with large-scale applications - such as Paradis and Raptor - that are of interest to national labs.The broader impact of this work is multifold. First, MPI-PPA will be beneficial for computational scientists as well as cluster administrators. Among the benefits will be a simple and fast performance tuning system, an increase in overall cluster efficiency, and a reduction in response times for individual applications. The technology developed in this project will be transferred, in the form of performance tuning and prediction software, and made available to the public through cooperation with Lawrence Livermore National Laboratory. Second, more interdisciplinary interaction between statistics and computer science will be fostered through the supervised statistical consulting center at the University of Georgia. Third, efforts will continue recruiting students from strong historically black colleges and universities in the area, such as Morehouse University.
该项目开发了一个系统,可以提高大量处理器(多达数万或数十万)的并行效率,而无需大规模运行程序。该系统称为 MPI-PPA:MPI 性能预测和建议。 MPI-PPA 将科学计算应用程序以及输入变量(包括所需的处理器数量 p)作为输入。 仅在少于 p 个处理器上执行 - 因此这些执行将快速发生 - MPI-PPA 将生成预计将实现较差可扩展性的程序阶段列表,允许程序员快速解决并可能重新实现这些阶段 - 如以及对整个程序运行的预测。MPI-PPA 使用统计回归进行这些预测,以开发可与任意数量的处理器一起使用的预测函数。 MPI-PPA 不需要大量的程序理解,考虑到计算科学家通常是其科学领域而不是计算机科学领域的专家,这是一个重要的方面。 MPI-PPA 的方法严重依赖统计技术,因此该项目的工作将是计算机科学(PI)和统计学(co-PI)之间的跨学科工作。 MPI-PPA 将通过使用 NAS 和 ASCI 代码等基准套件以及国家实验室感兴趣的 Paradis 和 Raptor 等大型应用程序进行验证。这项工作的更广泛影响是多方面的。 首先,MPI-PPA 将有利于计算科学家和集群管理员。 其好处包括简单而快速的性能调整系统、整体集群效率的提高以及单个应用程序响应时间的减少。 该项目开发的技术将以性能调整和预测软件的形式进行转让,并通过与劳伦斯利弗莫尔国家实验室的合作向公众开放。 其次,将通过佐治亚大学的监督统计咨询中心促进统计学和计算机科学之间更多的跨学科互动。第三,将继续努力从该地区历史悠久的黑人学院和大学(例如莫尔豪斯大学)招收学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Lowenthal其他文献
Cardiac Response to Exercise in Health and Disease
健康和疾病中心脏对运动的反应
- DOI:
10.1055/s-2007-1006312 - 发表时间:
1993-03-01 - 期刊:
- 影响因子:0
- 作者:
David Lowenthal;Michael Pollock - 通讯作者:
Michael Pollock
COMO CONHECEMOS O PASSADO
科莫·科赫西莫斯·奥帕萨多
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
David Lowenthal;Tradução Lúcia Haddad;Revisão técnica Mariana Maluf - 通讯作者:
Revisão técnica Mariana Maluf
The Interpretation of Ordinary Landscapes: Geographical Essays
普通风景的解读:地理散文
- DOI:
10.2307/633442 - 发表时间:
1979-06-07 - 期刊:
- 影响因子:0
- 作者:
D. W. Meinig;J. B. Jackson;Peirce F. Lewis;David Lowenthal;Marwyn S. Samuels;D. E. Sopher;Y. Tuan - 通讯作者:
Y. Tuan
Social Origins of Dictatorship and Democracy: Lord and Peasant in the Making of the Modern World
独裁与民主的社会根源:现代世界形成中的地主与农民
- DOI:
10.2307/2575331 - 发表时间:
1967-09-01 - 期刊:
- 影响因子:0
- 作者:
David Lowenthal;Barrington. Moore - 通讯作者:
Barrington. Moore
The Heritage Crusade and the Spoils of History
遗产远征和历史战利品
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
David Lowenthal - 通讯作者:
David Lowenthal
David Lowenthal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Lowenthal', 18)}}的其他基金
Collaborative Research: SHF: Medium: Co-Optimizing Computation and Data Transformations for Sparse Tensors
协作研究:SHF:中:稀疏张量的协同优化计算和数据转换
- 批准号:
2106621 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: Improving Utilization of High-Performance Computing Systems via Intelligent Co-scheduling
合作研究:OAC Core:通过智能协同调度提高高性能计算系统的利用率
- 批准号:
2103511 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Improving Utilization of High-Performance Computing Systems via Intelligent Co-scheduling
合作研究:OAC Core:通过智能协同调度提高高性能计算系统的利用率
- 批准号:
2103511 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CSR: Rethinking System Software for Overprovisioned, High-Performance Computing Systems
CSR:重新思考用于过度配置的高性能计算系统的系统软件
- 批准号:
1526015 - 财政年份:2015
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CSR: Small:Conductor: A Run-Time System for Exascale Computing
CSR:Small:Conductor:用于百亿亿次计算的运行时系统
- 批准号:
1216829 - 财政年份:2012
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CSR-PSCE, SM: MPI-PPA: Improving Efficiency of Large-Scale Clusters Through Statistical Performance Prediction
CSR-PSCE、SM:MPI-PPA:通过统计性能预测提高大规模集群的效率
- 批准号:
0936251 - 财政年份:2009
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Collaborative Research: Efficient Detection and Alleviation of Scalability Problems
协作研究:有效检测和缓解可扩展性问题
- 批准号:
0429285 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
SOFTWARE: Heterogeneous Cluster MPI: A System for Out-Of-Core, Heterogeneous Data Distribution
软件:异构集群 MPI:核外异构数据分发系统
- 批准号:
0234285 - 财政年份:2003
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Instrumentation Grant for Research in Parallel and Distributed Computing
用于并行和分布式计算研究的仪器补助金
- 批准号:
9986032 - 财政年份:2000
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Career: An Integrated Compiler/Run-Time System for Global Data Distribution
职业生涯:用于全球数据分发的集成编译器/运行时系统
- 批准号:
9733063 - 财政年份:1998
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似海外基金
CSR-PSCE, SM: MPI-PPA: Improving Efficiency of Large-Scale Clusters Through Statistical Performance Prediction
CSR-PSCE、SM:MPI-PPA:通过统计性能预测提高大规模集群的效率
- 批准号:
0936251 - 财政年份:2009
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
CSR-PSCE,SM: Compiler-Directed System Optimization of a Highly-Parallel Fine-Grained Chip Multiprocessor
CSR-PSCE,SM:高度并行细粒度芯片多处理器的编译器导向系统优化
- 批准号:
0834373 - 财政年份:2008
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Collaborative Research: CSR-PSCE, SM: Adaptive Memory Management in Shared Environments
合作研究:CSR-PSCE、SM:共享环境中的自适应内存管理
- 批准号:
0834323 - 财政年份:2008
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
CSR-PSCE, SM: Operating System-Level Resource Management in the Multi-Core Era
CSR-PSCE、SM:多核时代的操作系统级资源管理
- 批准号:
0834451 - 财政年份:2008
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Collaborative Research: CSR-PSCE, SM: Memory Thermal Management for Multi-Core Systems
合作研究:CSR-PSCE、SM:多核系统的内存热管理
- 批准号:
0834475 - 财政年份:2008
- 资助金额:
$ 32万 - 项目类别:
Standard Grant