BRIGE: Molecular Mechanisms of Bacterial Adhesion through Surface Biopolymers
BRIGE:通过表面生物聚合物进行细菌粘附的分子机制
基本信息
- 批准号:0823901
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
EEC-0823901Abu-lailBRIGE awards maintain global competitiveness by increasing the diversity of ENG researchers, who are initiating research programs early in their careers. BRIGE awards further the broaden participation of engineering researchers by increasing the number of engineering graduates, by improving the representation of women and minorities in engineering, and by understanding how to improve recruitment and retention of engineering students.Initial attachment of pathogenic bacteria to a surface is considered a key preliminary step in biofilm formation and subsequent infections. For many years, research to understand the attachment mechanisms focused on macroscale exploration of the effect of factors such as roughness and motility on the attachment. While such macroscale investigations can be very interesting, molecular-scale studies of bacterial interactions with surfaces can detail the molecular mechanisms of attachment. Despite the importance of such molecular-scale measurements, a clear relationship between the molecular properties of bacterial surface biopolymers and the adhesion of pathogenic microbes to surfaces does not exist. Motivated by the lack of such studies, this research aims to provide a preliminary understanding of the molecular effects of bacterial surface biopolymers on the initial attachment of Listeria monocytogenes to a model surface. The central hypothesis of this application is that surface biopolymers of L. monocytogenes are essential molecular components that strongly affect the bacterial surface charge, wettability, and elasticity and thus initial attachment of this microbe to surfaces. The PI will research the molecular effects of the surface biopolymers of L. monocytogenes on their initial attachment to surfaces using atomic force microscopy (AFM). AFM is unique among adhesion measurement techniques in its ability to quantify the interaction forces between bacteria and surfaces at a molecular level in liquid media that mimics that in which interactions occur. The results of this application will be instrumental to researchers designing new effective preventive and treatment strategies to bacterial infections.The PI will intertwine the research with educational activities integrating mathematics and bioengineering with the training of graduate and undergraduate students from diverse backgrounds. The education plan will: 1) provide mentored teaching and research experiences to a team of students consisting of a graduate student, two upper-level women engineering students, and two freshman disabled undergraduate students; 2) develop a teaching module that can be incorporated into upper-level bioengineering courses to enhance effective student learning of mathematical modeling and curve fitting; and 3) collaborate with an existing NSF GK-12 grant to incorporate hands-on experiments in the mathematics curricula of middle and high school students. The educational activities are geared to enhance the learning and scholarship of the participating students, especially those underrepresented in engineering, and to nurture their self-growth to be more independent and lifelong learners and researchers. The participating students in these educational activities are expected to gain an appreciation for the excitement of scientific research, learn to read and interpret scientific literature, design, perform, and analyze experiments, communicate their findings in both oral and written format, and work well within a team. Finally, the outreach hands-on experiments are expected to strengthen the middle and high school students' performance in mathematics and stimulate their interests in engineering. The results of the research will be disseminated to the scientific community through seminars, technical journal papers, and professional conference presentations and to the general public through news releases.This BRIGE grant will broaden the participation of and increase opportunities for all engineers including those from groups underrepresented in the engineering disciplines. This BRIGE grant will also encourage the PI to become actively and competitively engaged in research as an independent investigator.
EEC-0823901Abu-lailBRIGE 奖项通过增加在职业生涯早期启动研究项目的 ENG 研究人员的多样性来保持全球竞争力。 BRIGE 通过增加工程毕业生的数量、提高女性和少数族裔在工程领域的代表性以及了解如何改善工程学生的招募和保留,进一步扩大工程研究人员的参与。致病菌最初附着在表面上是被认为是生物膜形成和随后感染的关键初步步骤。 多年来,了解附着机制的研究重点是宏观探索粗糙度和运动性等因素对附着的影响。 虽然这种宏观研究可能非常有趣,但细菌与表面相互作用的分子尺度研究可以详细说明附着的分子机制。 尽管这种分子尺度的测量很重要,但细菌表面生物聚合物的分子特性与病原微生物对表面的粘附之间并不存在明确的关系。 由于缺乏此类研究,本研究旨在初步了解细菌表面生物聚合物对单核细胞增生李斯特氏菌初始附着到模型表面的分子效应。 该应用的中心假设是,单增李斯特菌的表面生物聚合物是重要的分子成分,会强烈影响细菌表面电荷、润湿性和弹性,从而影响该微生物对表面的初始附着。 PI 将使用原子力显微镜 (AFM) 研究单增李斯特菌表面生物聚合物对其最初附着在表面上的分子影响。 AFM 在粘附测量技术中是独一无二的,它能够在液体介质中的分子水平上量化细菌和表面之间的相互作用力,模拟相互作用发生的情况。 这项应用的结果将有助于研究人员设计新的有效的细菌感染预防和治疗策略。PI 将把研究与教育活动结合起来,将数学和生物工程与来自不同背景的研究生和本科生的培训结合起来。 该教育计划将:1)为由一名研究生、两名高年级女工科生和两名残疾本科生新生组成的学生团队提供指导性教学和研究经验; 2)开发可纳入生物工程高年级课程的教学模块,以增强学生对数学建模和曲线拟合的有效学习; 3) 与现有的 NSF GK-12 资助合作,将动手实验纳入初中和高中学生的数学课程中。 这些教育活动旨在提高参与学生的学习和学术水平,特别是那些在工程领域代表性不足的学生,并培养他们的自我成长,成为更加独立和终身的学习者和研究人员。参加这些教育活动的学生应该能够体会到科学研究的乐趣,学习阅读和解释科学文献,设计、执行和分析实验,以口头和书面形式交流他们的发现,并在一个团队。最后,外展动手实验有望加强中学生的数学成绩,激发他们对工程的兴趣。研究结果将通过研讨会、技术期刊论文和专业会议演讲向科学界传播,并通过新闻稿向公众传播。这笔 BRIGE 赠款将扩大所有工程师(包括来自团体的工程师)的参与并增加他们的机会在工程学科中代表性不足。 BRIGE 的资助还将鼓励 PI 作为独立研究者积极、有竞争力地参与研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nehal Abu-lail其他文献
Nehal Abu-lail的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nehal Abu-lail', 18)}}的其他基金
Increasing the Success of Talented Engineering Students with Unmet Financial Need with Scholarships, Culturally-responsive Curriculum, and Mentoring
通过奖学金、文化响应式课程和辅导,提高经济需求未得到满足的优秀工程学生的成功
- 批准号:
2322770 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
真菌活性分子pretrichodermamides中α,β-二硫桥和1,2-噁嗪环形成机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑桥外侧被盖核调控快眼动睡眠的分子机制及神经环路
- 批准号:81971238
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
树状桥联受阻酚类抗氧剂的设计合成及抗氧化活性调控机制
- 批准号:51303020
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
纳米纤维素在生物质复合材料中的分子桥偶联作用及其机制
- 批准号:31370560
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
快眼动睡眠促进记忆巩固的神经和分子机制
- 批准号:81341116
- 批准年份:2013
- 资助金额:11.0 万元
- 项目类别:专项基金项目
相似海外基金
The Edinburgh Molecular Mechanisms Cluster
爱丁堡分子机制集群
- 批准号:
MR/Y030877/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
- 批准号:
2338209 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319096 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319098 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Developmental mechanisms specifying vagal innervation of organ targets
指定器官目标迷走神经支配的发育机制
- 批准号:
10752553 - 财政年份:2024
- 资助金额:
-- - 项目类别: