Theory and Algorithms for Exploiting Sparsity in Signal Processing Applications
在信号处理应用中利用稀疏性的理论和算法
基本信息
- 批准号:0830612
- 负责人:
- 金额:$ 53.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractThis research examines theoretical, algorithmic, and computational issues that arise in signal processing problems where there is a need to compute sparse solutions. There are numerous signal-processing applications where sparsity constraint on the solution vector naturally arises. Brain imaging techniques such as MEG and EEG, sparse communication channels with large delay spread, high-resolution spectral analysis, direction of arrival estimation and compressed sensing are a few examples. The generalization and extension of the sparse Bayesian learning (SBL) techniques considered in this research will broaden the application domain and provide a very powerful complement to the existing maximum a posteriori (MAP) methods commonly used and in some cases even surpass them.The investigators study extensions and generalizations of the sparse source recovery problem to greatly broaden the application domain. A key consideration in the work is developing a rigorous framework to deal with dependency in the sparsity framework. Motivated by applications with sparse but local structure, the research considers intra-vector dependency in the single measurement case, as well as intra-vector dependency as required in the multiple measurement contexts, among others. The research also includes the development of connections between multi-user communication theory and the sparse signal recovery problem to shed light on the stability with which sparse signal recovery is possible and to develop an understanding of the limits of suboptimal source recovery methods. To deal with non-stationary environments, the research develops on-line adaptive algorithms that exploit the inherent sparse structure of the application. The research also includes evaluation of the resulting algorithms in several important application domains.Level of Effort StatementAt the recommended level of support, the PI and co-PI will make every attempt to meet the original scope and level of effort of the project.
摘要这项研究研究了在需要计算稀疏解决方案的信号处理问题中出现的理论,算法和计算问题。有许多信号处理应用程序,其中稀疏性限制自然会产生溶液向量。大脑成像技术,例如MEG和EEG,稀疏延迟扩散,高分辨率光谱分析,到达估计方向和压缩感应的稀疏通信通道就是一些例子。本研究中考虑的稀疏贝叶斯学习(SBL)技术的概括和扩展将扩大应用领域,并为现有最大值A后验(MAP)方法提供非常有力的补充,在某些情况下甚至超过了它们。工作中的一个关键考虑是开发一个严格的框架来处理稀疏框架中的依赖性。由稀疏但局部结构的应用激发,该研究考虑了单个测量案例中的向量依赖性,以及在多个测量环境中所需的媒介内依赖性等。该研究还包括多用户通信理论与稀疏信号恢复问题之间的连接发展,以阐明稀疏信号恢复的稳定性,并了解次优源恢复方法的限制。为了处理非平稳环境,研究开发了在线自适应算法,以利用应用程序的固有结构。该研究还包括评估几个重要应用程序域中所得算法的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Bhaskar Rao其他文献
Comparison of performance of SWAT and SIMHYD models in simulation of stream flow from Hidkal dam catchment area of India under present and future scenarios
SWAT 和 SIMHYD 模型在当前和未来情景下模拟印度 Hidkal 大坝集水区水流的性能比较
- DOI:10.53550/eec.2023.v29i03s.07010.53550/eec.2023.v29i03s.070
- 发表时间:20232023
- 期刊:
- 影响因子:0
- 作者:Bhaskar Rao;K. V. Rao;G. V. S. Reddy;M. Nemichandrappa;B. S. Polisgowdar;M. U. BhanuBhaskar Rao;K. V. Rao;G. V. S. Reddy;M. Nemichandrappa;B. S. Polisgowdar;M. U. Bhanu
- 通讯作者:M. U. BhanuM. U. Bhanu
Design and Development of Library Packages for Mixed-Signal Designs
混合信号设计库包的设计和开发
- DOI:
- 发表时间:20162016
- 期刊:
- 影响因子:0
- 作者:R. Rao;Dr.B.K.Madhavi;P.Vijaya;Bhaskar RaoR. Rao;Dr.B.K.Madhavi;P.Vijaya;Bhaskar Rao
- 通讯作者:Bhaskar RaoBhaskar Rao
Abstract #1172: Familial Versus Sporadic Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: Need for More Aggressive Therapy?
- DOI:10.1016/s1530-891x(20)44819-010.1016/s1530-891x(20)44819-0
- 发表时间:2016-05-012016-05-01
- 期刊:
- 影响因子:
- 作者:Pushpa Ravikumar;Thummala Kamala;Sri Srikanta;Lekshmi Narendran;Bhaskar Rao;Vasanthi Nath;Tejeswini Deepak;Lakshmi Reddy;Rina Bhargava;K. Sumathi;Babitha Thyagaraj;Priyanka Somasundar;Siddalingappa Chandraprabha;Kalleshwar Chandrika;B. Sunitha;Kasiviswanath Rajiv;Muralidhara Krishna;V. Reshma;Shivayogi Chitra; PreethiPushpa Ravikumar;Thummala Kamala;Sri Srikanta;Lekshmi Narendran;Bhaskar Rao;Vasanthi Nath;Tejeswini Deepak;Lakshmi Reddy;Rina Bhargava;K. Sumathi;Babitha Thyagaraj;Priyanka Somasundar;Siddalingappa Chandraprabha;Kalleshwar Chandrika;B. Sunitha;Kasiviswanath Rajiv;Muralidhara Krishna;V. Reshma;Shivayogi Chitra; Preethi
- 通讯作者:PreethiPreethi
共 3 条
- 1
Bhaskar Rao的其他基金
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
- 批准号:22256172225617
- 财政年份:2022
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Standard GrantStandard Grant
CIF: Small: Low Complexity Massive MIMO Systems: Synergistic use of Array Geometry, Modeling and Learning
CIF:小型:低复杂性大规模 MIMO 系统:阵列几何、建模和学习的协同使用
- 批准号:21249292124929
- 财政年份:2021
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Standard GrantStandard Grant
CIF: SMALL: MASSIVE MIMO SYSTEMS: Novel Channel Modeling and Estimation Methods
CIF:小型:大规模 MIMO 系统:新颖的信道建模和估计方法
- 批准号:16173651617365
- 财政年份:2016
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Standard GrantStandard Grant
CIF: Small: Novel (Channel Modeling, Feedback, and Cognitive) Approaches in Wireless Communications
CIF:小型:无线通信中的新颖(信道建模、反馈和认知)方法
- 批准号:11156451115645
- 财政年份:2011
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Standard GrantStandard Grant
EAGER: A Multi-User Communication and Information Theoretic Approach to the Sparse Signal Recovery Problem
EAGER:解决稀疏信号恢复问题的多用户通信和信息理论方法
- 批准号:11442581144258
- 财政年份:2011
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Standard GrantStandard Grant
Theory, Algorithms, and Applications of Signal Processing with the Sparseness Constraint
稀疏约束信号处理的理论、算法和应用
- 批准号:99029619902961
- 财政年份:1999
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Continuing GrantContinuing Grant
Novel Constrained Least Squares Algorithms With Application to MEG
新颖的约束最小二乘算法在 MEG 中的应用
- 批准号:92205509220550
- 财政年份:1993
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Standard GrantStandard Grant
Tracking Analysis of Recursive Stochastic Algorithms
递归随机算法的跟踪分析
- 批准号:87119848711984
- 财政年份:1988
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
利用雷达回波资料反演三维空间大气波导结构理论与算法研究
- 批准号:41775027
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
城市矿产开发利用的多态不确定性与非线性性特征及集成决策优化理论与算法
- 批准号:71671190
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
利用机载激光雷达全波形数据提取高精度三维地形数据的理论与方法
- 批准号:41001204
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
压缩传感中循环测量的理论与算法研究
- 批准号:11001123
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
利用信号非圆特性的鲁棒波束形成理论与算法研究
- 批准号:61072099
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:23406312340631
- 财政年份:2024
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Continuing GrantContinuing Grant
Exploiting translation elongation for improved biologics manufacturing
利用平移伸长来改进生物制品的制造
- 批准号:1076092710760927
- 财政年份:2023
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:
レーザ積層造形法による粉末とレーザの重畳効果を利用した高機能性発現材料の創製
利用激光增材制造利用粉末和激光的叠加效应创建高功能材料
- 批准号:22H0181222H01812
- 财政年份:2022
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
データドリブン方式を利用した空調システムシミュレーション自動生成ツールの開発
采用数据驱动方法开发空调系统仿真自动生成工具
- 批准号:21J1243821J12438
- 财政年份:2021
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Grant-in-Aid for JSPS FellowsGrant-in-Aid for JSPS Fellows
多状態システムの数理的性質を利用した信頼性設計問題に対するアルゴリズムの開発
利用多状态系统的数学特性开发可靠性设计问题的算法
- 批准号:21K1437021K14370
- 财政年份:2021
- 资助金额:$ 53.61万$ 53.61万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists