DRU: Integrated optimization of evacuation and mass care sheltering for hurricanes
DRU:飓风疏散和群众护理庇护所的综合优化
基本信息
- 批准号:0826832
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DRU: Integrated optimization of evacuation and sheltering for hurricanesPI: Rachel Davidson, University of Delaware (UD). Participating Institution: Cornell University.ABSTRACTThe goal of this project is to improve understanding of and decision support for evacuation and mass case sheltering in hurricanes. The task of moving tens or even hundreds of thousands of people from a wide geographic area in only a few days or hours under uncertain, dangerous conditions, getting them to safe locations, and keeping them safe until they can return home is an extraordinarily complicated process, and as Hurricane Katrina made abundantly clear, the stakes are high. Despite a lot of progress, recent events and unchecked population growth in hurricane-prone regions assure us that many challenges remain. The traditional, conservative approach of evacuating everyone thought to be at risk is no longer feasible in many areas in which there are simply too many people and too little transportation capacity. We propose a fundamentally new approach. In the past, math modeling in this application has been limited to estimating the time required to clear a region, assuming many characteristics of the problem are uncontrollable input (e.g., shelter locations). Instead, we will develop sophisticated optimization models with an expanded decision frame that focuses on higher-level objectives, such as minimizing life loss, cost, and inequity, and considers the full range of strategic and operational evacuation and sheltering strategies in meeting those objectives, including for example, vertical evacuation and strategically locating shelters. These models will be developed through a tight interaction between sociologists and engineers to ensure they are firmly grounded in the reality of people?s behavior. For the first time, the models will be based on individual hurricane scenarios instead of conservative aggregations of many events, and they will be dynamic, accounting for the fact that officials can update their decisions as an event unfolds and information about the situation changes. The project has 5 main steps: (1) determine a set of hurricane scenarios for use in evacuation and shelter models such that they appropriately represent the full range of possible events, but are few enough to allow detailed analysis with each; (2) conduct focus groups of key decisionmakers and stakeholders to identify and characterize appropriate decision objectives, constraints, assumptions, and possible evacuation and shelter management strategies; (3) using the focus group input, develop two mathematical optimization models?one long-term strategic and one short-term operational?for evacuation and sheltering decisions; (4) conduct surveys of affected citizens to ensure that the optimization model assumptions and results make sense; and (5) demonstrate the models through case studies in North Carolina and Florida. Any evacuation and sheltering planning effort is only as effective as its weakest link, so it requires a broad range of expertise from marine science, transportation engineering, risk modeling, optimization, and behavioral research collaborating closely. We have assembled this expertise on the project team.This project will help begin to transform the way hurricane evacuation and sheltering are conducted in the U.S., addressing many of the known limitations of the current approach. The new understanding and optimization models developed in this project will help local and state emergency managers better plan for hurricane evacuation and sheltering, thus reducing the deaths, injuries, and unnecessary expense associated with poorly planned or executed response in future hurricanes. By collaborating throughout the project with state and local emergency management departments and the American Red Cross, the key agencies in charge of hurricane evacuation and sheltering, we will ensure that study results are disseminated to practitioners as quickly and effectively as possible. Three graduate students will participate in all aspects of the research, each with at least two of the co-PIs on their committees to ensure tight integration. By providing a substantive example of truly interdisciplinary disaster research, the project will help facilitate the transformation of the well-known Disaster Research Center, historically based in sociology, into an interdisciplinary center. It will also help to launch the new interdisciplinary graduate program in Disaster Science and Management at the University of Delaware.
DRU:飓风的疏散和庇护综合优化:特拉华大学(UD)的雷切尔·戴维森(Rachel Davidson)。参与机构:康奈尔大学(Cornell University)。在不确定的,危险的条件下仅几天或几个小时内将数十甚至数千人从广阔的地理区域中移动的任务,将其带到安全的位置,并确保他们安全,直到他们可以返回家园,这是一个非常复杂的过程,随着卡特里娜飓风阐明,赌注很高。尽管取得了很多进展,但易于飓风的地区最近的事件和不受限制的人口增长确保我们仍然存在许多挑战。在许多人太多人和运输能力太少的许多领域,撤离每个人都处于危险之中的传统,保守的方法不再是可行的。我们提出了一种从根本上进行新的方法。过去,假设该问题的许多特征是无法控制的输入(例如,庇护所位置),则该应用程序中的数学建模仅限于估计清除区域所需的时间。取而代之的是,我们将开发具有扩展的决策框架的复杂优化模型,该模型的重点是更高级别的目标,例如最大程度地减少生命损失,成本和不平等,并考虑了各种战略性和运营撤离以及庇护策略,以实现这些目标,实现这些目标,例如,垂直撤离和战略性定位庇护所。这些模型将通过社会学家和工程师之间的紧密互动来开发,以确保它们牢固地基于人们的行为。这些模型将首次基于单个飓风的场景,而不是许多事件的保守聚合,它们将是动态的,这是因为官员可以随着事件的展开和信息的信息而更新他们的决定。该项目有5个主要步骤:(1)确定一组用于疏散和庇护模型的飓风场景,使它们适当地代表了可能的事件的全部范围,但很少有足够的时间允许对每个事件进行详细分析; (2)进行关键决策者和利益相关者的焦点小组,以识别和表征适当的决策目标,限制,假设以及可能的疏散和住所管理策略; (3)使用焦点小组的输入,开发两个数学优化模型?一个长期战略性和一个短期操作?用于疏散和庇护决策; (4)对受影响的公民进行调查,以确保优化模型假设和结果有意义; (5)通过北卡罗来纳州和佛罗里达州的案例研究演示了模型。任何疏散和庇护计划工作都与最弱的联系一样有效,因此它需要海上科学,运输工程,风险建模,优化和行为研究的广泛专业知识,并密切合作。我们已经在项目团队中汇集了这一专业知识。该项目将有助于开始改变美国进行飓风疏散和庇护的方式,以解决当前方法的许多已知限制。该项目中开发的新理解和优化模型将帮助地方和州应急管理者更好地计划飓风撤离和庇护,从而减少与未来飓风中计划或执行不良的反应相关的死亡,伤害和不必要的费用。通过在整个项目中与州和地方应急管理部门以及美国红十字会(负责飓风撤离和庇护的主要机构)合作,我们将确保将研究结果分散到尽快有效地向从业人员传播。三名研究生将参与研究的各个方面,每个研究生都在其委员会中至少有两个共同提议,以确保紧密整合。通过提供真正的跨学科灾难研究的实质性例子,该项目将有助于促进著名的灾难研究中心(历史上基于社会学)进入跨学科中心的转变。这还将有助于启动特拉华大学灾难科学与管理方面的新跨学科研究生课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Davidson其他文献
A Deep Generative Framework for Joint Households and Individuals Population Synthesis
联合家庭和个人人口综合的深层生成框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xiao Qian;Utkarsh Gangwal;Shangjia Dong;Rachel Davidson - 通讯作者:
Rachel Davidson
Rachel Davidson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Davidson', 18)}}的其他基金
Large-scale CoPe: Coastal Hazards, Equity, Economic prosperity, and Resilience (CHEER)
大规模 CoPe:沿海灾害、公平、经济繁荣和复原力 (CHEER)
- 批准号:
2209190 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Cooperative Agreement
SCC-CIVIC-PG Track B: An Integrated Scenario-based Hurricane Evacuation Management Tool to Support Community Preparedness
SCC-CIVIC-PG Track B:支持社区防备的基于场景的综合飓风疏散管理工具
- 批准号:
2040488 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Massive Smartphone Location Data to Improve Understanding and Prediction of Behavior in Hurricanes
合作研究:利用海量智能手机位置数据提高对飓风行为的理解和预测
- 批准号:
2002589 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
LEAP-HI: Embedding Regional Hurricane Risk Management in the Life of a Community: A Computational Framework
LEAP-HI:将区域飓风风险管理融入社区生活:计算框架
- 批准号:
1830511 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CRISP Type 2/Collaborative Research: Defining and Optimizing Societal Objectives for the Earthquake Risk Management of Critical Infrastructure
CRISP 类型 2/合作研究:定义和优化关键基础设施地震风险管理的社会目标
- 批准号:
1735483 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: An Interdisciplinary Approach to Modeling Multiple Stakeholder Decision-Making to Reduce Regional Natural Disaster Risk
协作研究:采用跨学科方法对多个利益相关者决策进行建模以减少区域自然灾害风险
- 批准号:
1435298 - 财政年份:2014
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Hazards SEES Type 2: Dynamic Integration of Natural, Human, and Infrastructure Systems for Hurricane Evacuation and Sheltering
灾害 SEES 类型 2:飓风疏散和庇护的自然、人类和基础设施系统的动态整合
- 批准号:
1331269 - 财政年份:2013
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Collaborative Research: Career Enhancement of Academic Women in Earthquake Engineering Research (ENHANCE)
合作研究:地震工程研究中学术女性的职业提升(ENHANCE)
- 批准号:
1141442 - 财政年份:2012
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
RAPID: Post-Earthquake Fires in the March 2011 Japan Earthquake and Tsunami
RAPID:2011 年 3 月日本地震和海啸中的震后火灾
- 批准号:
1138675 - 财政年份:2011
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: San Bruno, California, September 9, 2010, Gas Pipeline Explosion and Fire
RAPID/合作研究:加利福尼亚州圣布鲁诺,2010 年 9 月 9 日,天然气管道爆炸和火灾
- 批准号:
1103823 - 财政年份:2010
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似国自然基金
基于多源知识融合的大规模定日镜集群主动协同优化控制方法
- 批准号:62373067
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向智能驾驶的虚实融合网络架构及资源优化方法研究
- 批准号:62371444
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于深度学习融合多模态超声-光声影像组学及滑膜免疫病理特征构建精准预测难治性类风湿性关节炎并优化诊疗路径的方法研究
- 批准号:82302207
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向通感算融合的移动边缘计算多维资源分配优化理论和方法
- 批准号:62301099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
文化自信与现实教育情景融合诉求下中医药文化进校园的绩效评价与优化研究
- 批准号:72364020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
GOALI: Integrated Design and Operability Optimization of Industrial-Scale Modular Intensified Systems
GOALI:工业规模模块化强化系统的集成设计和可操作性优化
- 批准号:
2401564 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Opioid-Sparing Non-Surgical, Bioresorbable Nerve Stimulator for Pain Relief
节省阿片类药物的非手术生物可吸收神经刺激器,用于缓解疼痛
- 批准号:
10759642 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions
针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施
- 批准号:
10650695 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别: