The Fast Sweeping Method and Its Applications

快速扫掠方法及其应用

基本信息

  • 批准号:
    0811254
  • 负责人:
  • 金额:
    $ 15.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

The recently developed fast sweeping method has been proved to be an efficient iterative method for a class of Hamilton-Jacobi equations. In this project, a continuing study and analysis of the fast sweeping method will be carried out.Applications of the method to other problems will be pursued.In particular the following work will be done:(1) Understand the connection to control/game theory.(2) Study the contraction property of the fast sweeping algorithm in the general framework of iterative method.(3) Error analysis for the numerical solution and its derivative.(4) Develop fast sweeping method for other type of hyperbolic partial differential equations, such as hyperbolic conservation laws and radiative transport equation.Hamilton-Jacobi equations are nonlinear partial differential equations that have many applications in classical mechanics, optimal control, geophysics, geometric optics and image processing. The nonlinearity of this type of problem poses great challenges for mathematical analysis and for developing efficient numerical algorithms. The fast sweeping method is a simple iterative method. It can work efficiently for a class of difficult nonlinear problem, which is quite remarkable and worth further understanding and development.The broader impact of this project is not only to provide efficient numerical methods for real applications in science and engineering but also to shed insight for constructing iterative methods for other nonlinear problems.In addition integration with education at different levels will also be designed.
最近发展的快速扫描方法已被证明是一类 Hamilton-Jacobi 方程的有效迭代方法。在本项目中,将对快速扫描方法进行持续的研究和分析。将寻求该方法在其他问题中的应用。特别将完成以下工作:(1)理解与控制/博弈论的联系.(2)在迭代法的一般框架下研究快速扫描算法的收缩性质。(3)数值解及其导数的误差分析。(4)开发其他类型双曲偏微分方程的快速扫描方法,例如双曲守恒定律和辐射输运方程。Hamilton-Jacobi 方程是非线性偏微分方程,在经典力学、最优控制、地球物理学、几何光学和图像处理中有许多应用。这类问题的非线性给数学分析和开发高效的数值算法带来了巨大的挑战。快速扫描法是一种简单的迭代方法。它可以有效地解决一类困难的非线性问题,这是非常了不起的,值得进一步理解和发展。该项目更广泛的影响不仅是为科学和工程的实际应用提供有效的数值方法,而且为构建其他非线性问题的迭代方法。此外,还将设计与不同层次教育的结合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong-Kai Zhao其他文献

Quantitative description of non-equilibrium turbulent phenomena in compressors
压缩机内非平衡湍流现象的定量描述
  • DOI:
    10.1016/j.ast.2017.09.020
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Le Fang;Hong-Kai Zhao;Li-Peng Lu;Yang-Wei Liu
  • 通讯作者:
    Yang-Wei Liu

Hong-Kai Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong-Kai Zhao', 18)}}的其他基金

Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
  • 批准号:
    2309551
  • 财政年份:
    2023
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Continuing Grant
Computational Forward and Inverse Radiative Transfer
计算正向和反向辐射传输
  • 批准号:
    2012860
  • 财政年份:
    2020
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant
Intrinsic Complexity of Random Fields and Its Connections to Random Matrices and Stochastic Differential Equations
随机场的内在复杂性及其与随机矩阵和随机微分方程的联系
  • 批准号:
    2048877
  • 财政年份:
    2020
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant
Intrinsic Complexity of Random Fields and Its Connections to Random Matrices and Stochastic Differential Equations
随机场的内在复杂性及其与随机矩阵和随机微分方程的联系
  • 批准号:
    1821010
  • 财政年份:
    2018
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant
Shape and data analysis using computational differential geometry
使用计算微分几何进行形状和数据分析
  • 批准号:
    1418422
  • 财政年份:
    2014
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant
A new approximation for effective Hamiltonians
有效哈密顿量的新近似
  • 批准号:
    1115698
  • 财政年份:
    2011
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods For Material Transport On Moving Interfaces And Hamilton Jacobi Equations
移动界面上物质传输的有效数值方法和哈密顿雅可比方程
  • 批准号:
    0513073
  • 财政年份:
    2005
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant
Applications of Variational Level Set Methods to Some Multiphase Problems
变分水平集方法在一些多相问题中的应用
  • 批准号:
    9706566
  • 财政年份:
    1997
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant

相似海外基金

I-Corps: Novel morphing drones with variable spanning and sweeping transition modes
I-Corps:具有可变跨度和扫掠过渡模式的新型变形无人机
  • 批准号:
    1925372
  • 财政年份:
    2019
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant
Collaborative Research: A Sweeping Process Framework to Control the Dynamics of Elastoplastic Systems
协作研究:控制弹塑性系统动力学的全面过程框架
  • 批准号:
    1916878
  • 财政年份:
    2019
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant
Collaborative Research: A Sweeping Process Framework to Control the Dynamics of Elastoplastic Systems
协作研究:控制弹塑性系统动力学的全面过程框架
  • 批准号:
    1916876
  • 财政年份:
    2019
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant
I-Corps: Novel morphing drones with variable spanning and sweeping transition modes
I-Corps:具有可变跨度和扫掠过渡模式的新型变形无人机
  • 批准号:
    1925372
  • 财政年份:
    2019
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant
Fast Huygens Sweeping Methods for Large-Scale High Frequency Wave Propagation and Wave-Related Imaging Problems
用于大规模高频波传播和波相关成像问题的快速惠更斯扫描方法
  • 批准号:
    1522249
  • 财政年份:
    2015
  • 资助金额:
    $ 15.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了