Holomorphic families of complex dynamical systems

复杂动力系统的全纯族

基本信息

  • 批准号:
    0813675
  • 负责人:
  • 金额:
    $ 4.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT. The Principal Investigator (PI) aims to study complex dynamical systems in holomorphic families. The questions are centered on the notions of stability within families, bifurcations, and degenerations. More specifically, the PI will pursue (1) questions about the compactification of the moduli space of rational maps, where it remains open to construct a natural boundary which captures the information of dynamical degeneration, and to describe precisely which stable families are bounded in the moduli space; (2) characterizations of stability for families of higher-dimensional dynamical systems, where the techniques from one-dimensional dynamics do not generalize, but there has been recent progress using pluripotential theory; (3) an investigation of families of polynomials in one variable and the associated space of trees with dynamics, which provides a continuous combinatorial model for polynomials in all degrees, and should model the structure of the escape locus in the moduli space of polynomials; and (4) properties of the transfinite diameter in connection with families of polynomials in all dimensions, where the discussion involves a combination of analytic and arithmetic methods.A more general overview:There are many open questions around the long-term effects of perturbations of a dynamical system. The PI studies the iteration of rational functions of one variable, one of the simplest examples of a non-invertible system with non-trivial dynamics. In this project, she aims to answer questions of a global nature: what is the structure of the stable regime in a complex-analytic family of rational functions? Or, what type of degenerations can take place and what do they tell us about the bifurcation locus? The motivation for studying these particular families comes from interesting connections with hyperbolic geometry, algebraic and arithmetic geometry, and potential theory.
抽象的。首席研究员(PI)旨在研究全纯族中的复杂动力系统。 问题集中在家庭内部的稳定、分歧和堕落的概念上。更具体地说,PI 将追求(1)关于有理映射模空间的紧致化的问题,在该问题中,构建捕获动态退化信息的自然边界仍然是开放的,并准确描述哪些稳定族在有理映射中受到限制。模空间; (2)高维动力系统族的稳定性表征,其中一维动力学技术无法推广,但最近在使用多能理论方面取得了进展; (3) 研究一个变量中的多项式族以及与动力学相关的树空间,为所有次数的多项式提供连续组合模型,并且应该对多项式模空间中的逃逸轨迹的结构进行建模; (4)与所有维度的多项式族相关的超限直径的性质,其中的讨论涉及分析和算术方法的组合。更一般的概述:围绕扰动的长期影响存在许多悬而未决的问题一个动力系统。 PI 研究一个变量的有理函数的迭代,这是具有非平凡动力学的不可逆系统的最简单示例之一。 在这个项目中,她的目标是回答全球性的问题:理性函数的复杂分析族中稳定政权的结构是什么?或者,会发生什么类型的变性以及它们告诉我们有关分叉轨迹的什么信息? 研究这些特殊族的动机来自于与双曲几何、代数和算术几何以及势论的有趣联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura DeMarco其他文献

Uniform Manin-Mumford for a family of genus 2 curves
属 2 曲线族的均匀 Manin-Mumford
  • DOI:
    10.4007/annals.2020.191.3.5
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laura DeMarco;Holly Krieger;Hexi Ye
  • 通讯作者:
    Hexi Ye
Bounded height in families of dynamical systems
动力系统族中的有界高度
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laura DeMarco;Dragos Ghioca;Holly Krieger;Khoa Nguyen;Tom Tucker;Hexi Ye
  • 通讯作者:
    Hexi Ye

Laura DeMarco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura DeMarco', 18)}}的其他基金

Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
  • 批准号:
    2246630
  • 财政年份:
    2023
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Standard Grant
Unlikely Intersections in Diophantine Geometry and Dynamics
丢番图几何与动力学中不太可能的交叉点
  • 批准号:
    2200981
  • 财政年份:
    2022
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Standard Grant
Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
  • 批准号:
    2050037
  • 财政年份:
    2020
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Standard Grant
Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
  • 批准号:
    1856103
  • 财政年份:
    2019
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Standard Grant
Midwest Dynamical Systems Conferences 2019-2020
2019-2020 年中西部动力系统会议
  • 批准号:
    1856176
  • 财政年份:
    2019
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Standard Grant
Complex Algebraic Dynamics and Geometry
复杂代数动力学和几何
  • 批准号:
    1600718
  • 财政年份:
    2016
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Continuing Grant
Midwest Dynamical Systems Conferences; Indianapolis, IN - October 21-23, 2016 ; (2nd Conference in 2017)
中西部动力系统会议;
  • 批准号:
    1600654
  • 财政年份:
    2016
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Continuing Grant
Moduli spaces of complex dynamical systems
复杂动力系统的模空间
  • 批准号:
    1517080
  • 财政年份:
    2014
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Continuing Grant
Moduli spaces of complex dynamical systems
复杂动力系统的模空间
  • 批准号:
    1302929
  • 财政年份:
    2013
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Continuing Grant
CAREER: Algebraic structures in complex dynamics
职业:复杂动力学中的代数结构
  • 批准号:
    0747936
  • 财政年份:
    2008
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Continuing Grant

相似国自然基金

城镇化进程中的家庭碳排放:特征、机制、模拟及减排路径
  • 批准号:
    42371207
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
健康本源视角下先心病患儿家庭健康促进模式构建及干预:基于双ABCX模型
  • 批准号:
    72364022
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
基于家庭视角的都市圈临界城镇跨界一体化规划与治理研究:以深圳都市圈为例
  • 批准号:
    52378062
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
家庭成员行为互动模式与生活空间重塑研究
  • 批准号:
    42371245
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
企业开放式创新平台家庭部门创新扩散下的价值共创过程与模式研究
  • 批准号:
    72302041
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Families with multiple and complex needs: refocusing on early intervention
具有多重复杂需求的家庭:重新关注早期干预
  • 批准号:
    DP230101758
  • 财政年份:
    2023
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Discovery Projects
Puerto Rico Collaborative Advancement of Research, Innovations, Best Practices and Equity for Children, Youth and Families (PR-CARIBE)
波多黎各儿童、青少年和家庭研究、创新、最佳实践和公平合作促进组织 (PR-CARIBE)
  • 批准号:
    10778490
  • 财政年份:
    2023
  • 资助金额:
    $ 4.92万
  • 项目类别:
Practice Wellness: Equipping home visitors with skills in reflective coaching, parent mediated child development, and occupational wellness to strengthen child outcomes among low-resourced families
实践健康:为家庭访客提供反思性辅导、家长介导的儿童发展和职业健康方面的技能,以增强资源匮乏家庭的儿童成果
  • 批准号:
    10820982
  • 财政年份:
    2023
  • 资助金额:
    $ 4.92万
  • 项目类别:
Succumbing, Surviving, and Thriving: The Development of Low-Income Students in the Long Shadow of COVID-19
屈服、生存和繁荣:低收入学生在 COVID-19 阴影下的发展
  • 批准号:
    10655146
  • 财政年份:
    2023
  • 资助金额:
    $ 4.92万
  • 项目类别:
Resettled Refugee Families for Healing (RRF4H): A Study of the Intergenerational Impact of War Trauma and Resilience
重新安置难民家庭康复(RRF4H):战争创伤和复原力的代际影响研究
  • 批准号:
    10740686
  • 财政年份:
    2023
  • 资助金额:
    $ 4.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了