Collaborative Research: Simultaneous Contour Grouping and Medial Axis Estimation
协作研究:同时轮廓分组和中轴估计
基本信息
- 批准号:0812167
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Last Modified Date: 07/21/08 Last Modified By: Daniel F. DeMenthon Abstract With the ever faster growing number of images and videos, the main bottleneck in extracting the information contained in them is their analysis (indexing) and retrieval. Nowadays image and video search engines are based on textual descriptions, since visual cues are at too low level to provide useful retrieval results when dealing with a large variety of images and videos. For example, if a human submits a query image with the request to find similar images, she focuses on a certain object or a group of objects in the query image. Thus, the meaning of similarity is given by the images that contain similar objects. Therefore, extraction of objects in images (and videos) is a key factor for true progress in content based image/video retrieval (CBIR). However, object extraction belongs to unsolved problems in Computer Vision (CV). This fact led to the development of a huge number of approaches that try to do CBIR without object extraction. However, although such approaches may be successful in some restricted application domains, in which case low level features may be sufficient to replace object extraction, they have not been successful in general purpose CBIR. The PIs believe solving the object extraction problem will lead to a breakthrough in CBIR. Therefore, the PIs propose to work on object extraction in images. There have been a large number of attempts to solve the object extraction problem in CV, and none provided a satisfactory solution. Why will our approach provide a good solution? A new methodology and a computation framework proposed by the PIs provide solid evidence that the breakthrough in object extraction is possible. On the cognitive and geometric modeling side, the PIs propose to use a higher level knowledge of shape similarity and a mid level knowledge of local and global symmetry as cognitively motivated constraints for object extraction. Constraints are essential because object extraction is known to be an ill-posed inverse problem. The human visual system solves this problem very well and we are getting close to a full understanding of how this is done. On the computational side, the PIs propose a new framework for a simultaneous estimation of medial axes and the contours. The proposed approach is inspired by the SLAM (Simultaneous Localization and Mapping) approaches in the field of robot mapping. Recent breakthrough solutions in robot mapping are based on the SLAM computation with particle filters. SLAM computation iterates over the processes of localization of the robot in the existing partial map (trajectory estimation), followed by a map update based on new observations and the estimated trajectory. The PIs treat the medial axis as trajectory of a virtual robot and the partial boundary as the map that is composed of edge segments associated with the medial axis. A first successful application of this framework is demonstrated by the PIs in the preliminary results. Project URL: http://knight.cis.temple.edu/~shape/
上次修改日期:07/21/08上次修改者:Daniel F. Dementhon摘要,图像和视频数量的增长速度越来越大,提取它们中包含的信息的主要瓶颈是他们的分析(索引)和检索。如今,图像和视频搜索引擎基于文本描述,因为视觉提示的水平太低,无法在处理各种图像和视频时提供有用的检索结果。例如,如果人类提交了一个查询图像,并要求查找类似图像的请求,则她专注于查询图像中的某个对象或一组对象。因此,相似性的含义由包含相似对象的图像给出。因此,图像(和视频)中对象的提取是基于内容的图像/视频检索(CBIR)真正进步的关键因素。但是,对象提取属于计算机视觉(CV)中未解决的问题。这一事实导致了许多尝试在没有物体提取的情况下尝试进行CBIR的大量方法。但是,尽管这种方法可能在某些受限制的应用程序域中取得成功,但是在这种情况下,低级别的特征可能足以替代对象提取,但在通用CBIR中,它们尚未成功。 PI认为解决对象提取问题将导致CBIR的突破。因此,PI建议在图像中进行对象提取。在CV中解决了对象提取问题,已经进行了大量尝试,没有一个提供令人满意的解决方案。为什么我们的方法会提供一个好的解决方案? PI提出的新方法和计算框架提供了可靠的证据,表明对象提取的突破是可能的。在认知和几何建模方面,PIS建议使用更高层次的形状相似性知识以及对局部和全局对称性的中层知识作为对象提取的认知动机的约束。约束是必不可少的,因为已知对象提取是一个不良的逆问题。人类的视觉系统很好地解决了这个问题,我们对完成方式的完整了解。在计算侧,PI为同时估计内侧轴和轮廓的新框架提出了一个新的框架。所提出的方法的灵感来自在机器人映射领域中的猛击(同时定位和映射)方法。机器人映射中的最新突破解决方案是基于用粒子过滤器的猛击计算。 SLAM计算在现有部分映射(轨迹估计)中的机器人定位过程(轨迹估计)中进行了迭代,然后基于新观测值和估计的轨迹进行地图更新。 PI将内侧轴视为虚拟机器人的轨迹,而部分边界则是由与内侧轴相关的边段组成的图。 PI在初步结果中证明了该框架的第一个成功应用。项目URL:http://knight.cis.temple.edu/~shape/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zygmunt Pizlo其他文献
Monocular reconstruction of shapes of natural objects from orthographic and perspective images.
从正交图像和透视图像单眼重建自然物体的形状。
- DOI:
10.3389/fnins.2024.1265966 - 发表时间:
2024 - 期刊:
- 影响因子:4.3
- 作者:
Mark Beers;Zygmunt Pizlo - 通讯作者:
Zygmunt Pizlo
Zygmunt Pizlo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zygmunt Pizlo', 18)}}的其他基金
Collaborative Research: Recovery of 3D Shapes From Single Views
合作研究:从单一视图恢复 3D 形状
- 批准号:
0924859 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Workshop on Human Problem Solving: Difficult Optimization Problems, Indiana June 2005
人类问题解决研讨会:困难的优化问题,印第安纳州,2005 年 6 月
- 批准号:
0456651 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: From Edge Pixels to Recognition of Parts of Object Contours
协作研究:从边缘像素到物体轮廓部分的识别
- 批准号:
0533968 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
生物启发的室内异构多机器人协作语义SLAM方法研究
- 批准号:61873086
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
基于SWIPT的OFDM协作水声通信理论与技术研究
- 批准号:61871192
- 批准年份:2018
- 资助金额:16.0 万元
- 项目类别:面上项目
不完全量测与通信局限下的多机器人协作实时SLAM一致性分析研究
- 批准号:61305134
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
仿动物空间认知的多机器人协作目标搜索方法研究
- 批准号:61203365
- 批准年份:2012
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于量子随机博弈论的三维未知环境下多机器人合作与竞争问题研究
- 批准号:61075076
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Japan-Germany collaborative research toward simultaneous real-time imaging of cancer pathology and radiotherapy effects
日德合作研究癌症病理和放射治疗效果同步实时成像
- 批准号:
23KK0206 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Collaborative Research: As above so below: Quantifying the role of simultaneous LLSVPs and continents on Earth's cooling history using numerical simulations of mantle convection
合作研究:如上所述,如下:使用地幔对流数值模拟来量化同时发生的 LLSVP 和大陆对地球冷却历史的作用
- 批准号:
2310324 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Design and mechanistic studies on microenvironment-sensitive polymeric nanoparticles for simultaneous contents release and ultrasound imaging
合作研究:微环境敏感聚合物纳米粒子的设计和机理研究,用于同时释放内容物和超声成像
- 批准号:
2322963 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: As above so below: Quantifying the role of simultaneous LLSVPs and continents on Earth's cooling history using numerical simulations of mantle convection
合作研究:如上所述,如下:使用地幔对流数值模拟来量化同时发生的 LLSVP 和大陆对地球冷却历史的作用
- 批准号:
2310325 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Design and mechanistic studies on microenvironment-sensitive polymeric nanoparticles for simultaneous contents release and ultrasound imaging
合作研究:微环境敏感聚合物纳米粒子的设计和机理研究,用于同时释放内容物和超声成像
- 批准号:
2322964 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant