Combinatorics and Number Theory IV

组合数学与数论 IV

基本信息

  • 批准号:
    0801096
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This proposal contains three projects, in number theory and itsapplications to combinatorics. The first project concerns thearithmetic of modular forms for noncongruence subgroups. Fornoncongruence subgroups whose associated modular curves have a modelover the rationals, Atkin and Swinnerton-Dyer suggested veryinteresting congruence relations on the Fourier coefficients of cuspforms which are meant to replace the Hecke operators. On the otherhand, Scholl has attached Galois representations to the space ofnoncongruence cusp forms. The ASD congruences together with themodularity of Scholl representations yield extremely interestingcongruence relations between the Fourier coefficients of congruenceand noncongruence forms. Some examples were constructed by the PIand her coauthors. Continuing her joint work with coauthors, the PIplans to apply the modularity lifting theorems to investigate whenScholl representations arise from Hilbert modular forms, and to usethe modularity result and ASD congruence relations to establish theconjecture which says that the Fourier coefficients of genuinelyalgebraic noncongruence forms have unbounded denominators. Thesecond project is to construct zeta functions of complexes arisingfrom finite quotients of the Bruhat-Tits buildings. Such zetafunction should be a rational function which encodes topological andspectral information of the complex, and which satisfies the RiemannHypothesis if and only if the complex is Ramanujan. When dimensionis one, this is the Ihara zeta function attached to a graph. In avery recent work, the PI and a PhD student did the 2-dimensionalcase. The PI proposes to explore the general case. The third projectconcerns low-density parity-check (LDPC) codes. The LDPC codes areequipped with very efficient decoding algorithms, which make themhighly desirable in real world applications. The source of decodingerrors is the pseudo-codewords. One way to understand thesepseudo-codewords is to construct a suitable infinite series, calleda zeta function, with each term corresponding to a pseudo-codeword.Such zeta function should be a rational function with goodcombinatorial property. This was done indirectly in a joint paper ofthe PI. The PI proposes to pursue a more direct approach.It has been the PI's long term research goal to do fundamentalresearch in number theory and to seek applications of number theoryto combinatorics and coding theory, especially to solve real worldproblems. The study of interplay between these areas has turned outto be quite fruitful. This proposal is a continuation of the PI's effort to pursue the same general theme. Part of the research will be carried out by the PI's Ph Dstudents. The results from this proposal will be disseminatedbroadly through the talks given by the PI in seminars, colloquia,conferences, short courses, and workshops. They will also beincorporated in the graduate courses taught by the PI. Weeklyinformal seminars will be conducted to integrate research witheducation and teaching. A conference is planned in 2010 todisseminate results from this project.
该提案包含三个项目,涉及数论及其在组合学中的应用。第一个项目涉及非同余子群的模形式的算术。对于相关模曲线具有有理数模型的非同余子群,Atkin 和 Swinnerton-Dyer 提出了关于尖点形式的傅里叶系数的非常有趣的同余关系,旨在取代 Hecke 算子。另一方面,绍尔将伽罗瓦表示附加到非全等尖点形式的空间中。 ASD 同余与 Scholl 表示的模性一起在同余和非同余形式的傅立叶系数之间产生了极其有趣的同余关系。一些示例是由 PI 和她的合著者构建的。 PI 继续与合著者共同工作,计划应用模性提升定理来研究何时从希尔伯特模形式产生 Scholl 表示,并使用模性结果和 ASD 同余关系来建立猜想,即真正代数非同余形式的傅里叶系数具有无界分母。第二个项目是构造由 Bruhat-Tits 建筑物的有限商产生的复合体的 zeta 函数。这样的zeta函数应该是一个有理函数,它编码了配合物的拓扑和光谱信息,并且当且仅当配合物是拉马努金时,它满足黎曼假设。当维度为 1 时,这是附加到图形的 Ihara zeta 函数。在最近的一项工作中,PI 和一名博士生做了二维案例。 PI 建议探索一般情况。第三个项目涉及低密度奇偶校验(LDPC)码。 LDPC 码配备了非常高效的解码算法,这使得它们在现实世界的应用中非常受欢迎。解码错误的根源是伪码字。理解这些伪码字的一种方法是构造一个合适的无穷级数,称为zeta函数,其中每一项对应一个伪码字。这样的zeta函数应该是具有良好组合性质的有理函数。这是在 PI 的联合论文中间接完成的。 PI建议寻求更直接的方法。在数论方面进行基础研究并寻求数论在组合数学和编码理论中的应用,特别是解决现实世界的问题,一直是PI的长期研究目标。对这些领域之间相互作用的研究已证明是非常富有成果的。该提案是 PI 努力追求同一主题的延续。部分研究将由 PI 的博士生进行。该提案的结果将通过 PI 在研讨会、座谈会、会议、短期课程和讲习班中的演讲进行广泛传播。它们也将被纳入 PI 教授的研究生课程中。每周举行非正式研讨会,将研究与教育教学结合起来。计划于 2010 年召开一次会议来传播该项目的成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wen-Ching Li其他文献

Wen-Ching Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wen-Ching Li', 18)}}的其他基金

Impact of Computation on Number Theory, July 30 - August 3, 2014
计算对数论的影响,2014 年 7 月 30 日至 8 月 3 日
  • 批准号:
    1414219
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
International Conference on Galois Representations, Automorphic Forms and Shimura Varieties
伽罗瓦表示、自同构形式和 Shimura 簇国际会议
  • 批准号:
    1134046
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory V
组合学与数论 V
  • 批准号:
    1101368
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Workshop on Graphs and Arithmetic
图表与算术研讨会
  • 批准号:
    1007973
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory III
组合数学与数论 III
  • 批准号:
    0457574
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory II
组合数学与数论 II
  • 批准号:
    9970651
  • 财政年份:
    1999
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory
组合学和数论
  • 批准号:
    9622938
  • 财政年份:
    1996
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Number Theory, Combinatorics and Representation Theory (Mathematics)
数论、组合学和表示论(数学)
  • 批准号:
    9003126
  • 财政年份:
    1991
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Number Theory, Combinatorics, and Representation Theory
数学科学:数论、组合学和表示论
  • 批准号:
    8404083
  • 财政年份:
    1984
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Analytic, Algebraic and Combinatorial Number Theory
解析数论、代数数论和组合数论
  • 批准号:
    8101943
  • 财政年份:
    1981
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

数字技术创新网络结构与企业生产率增长研究:基于专利引用数据的理论与实证
  • 批准号:
    72303018
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字孪生油气藏关键理论方法——D/G Transformer迭代复杂油气藏建模研究
  • 批准号:
    42330813
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
时变传输配置下的射频功放动态数字预失真理论与应用研究
  • 批准号:
    62371436
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
数字化赋能农业企业组织韧性提升:理论机制与实证研究
  • 批准号:
    72371105
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
数字经济赋能农业虚拟产业集群的理论机理与实现路径研究:基于协同创新网络视角
  • 批准号:
    72363011
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Conference: Number Theory and Combinatorics in Duluth
会议:德卢斯数论与组合学
  • 批准号:
    2309811
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Computability and Decision Procedures for Number Theory and Combinatorics
数论和组合学的可计算性和决策程序
  • 批准号:
    RGPIN-2018-04118
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of Words and Number Theory
单词组合学和数论
  • 批准号:
    RGPIN-2020-04685
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了