Dipolar Field Effect Enhanced Photochemical Reactions

偶极场效应增强光化学反应

基本信息

  • 批准号:
    0804770
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: Certain ceramic materials can catalyze water photolysis and produce hydrogen from water and sunlight. As a fuel for the future, hydrogen is especially attractive because it has three times the energy density of oil and its combustion does not create dangerous emissions, greenhouse gases, or radioactive byproducts. While electrical power generated from photolytic hydrogen is sustainable and generates no toxic or radioactive byproducts, it is also more expensive than the power generated by conventional systems that use fossil or nuclear fuels. This presents an exciting challenge for scientists and engineers to have a truly beneficial and widespread impact on the wellbeing of our society and environment. Therefore, the ultimate goal of this research is to develop the understanding needed to design composite materials for the lower cost synthesis of photolytic hydrogen. TECHNICAL DETAILS: Previous research has shown that when a thin titania film is supported on a ferroelectric BaTiO3 substrate, its photochemical reactivity is greater than that of bulk titania. The phenomenon is called the dipolar field effect. The dipolar field effect can potentially be used to create improved photolysis catalysts, self-cleaning materials, or materials for the photocatalytic degradation of pollutants. At the basis of any such technological developments, there must be a firm scientific understanding of the mechanism of the reactivity enhancement. Therefore, the aim of the current project is to develop a mechanistic model for the dipolar field effect. The research is guided by two hypotheses about the mechanism of the dipolar field effect. The first is that fields within the ferroelectric substrate, incompletely screened, bend the bands in the titania overlayer in such a way that electrons and holes are driven in opposite directions. The second hypothesis is that there is an ideal size for the domains that maximizes reactivity by providing adequate separation, while also preventing depolarization and providing adequate surface area. These hypotheses are being tested by quantitative microscopy experiments on idealized ferroelectric//TiO2 heterostructures. To test the generality of these findings, several exploratory experiments with ferroelectric//WO3 and ferroelectric//Fe2O3 heterostructures are also being conducted. The results of this project will provide the quantitative details necessary to confirm the proposed mechanism of the dipolar field effect and, therefore, provide the scientific basis for the design of a composite photolysis catalyst with improved efficiency. As energy prices rise, there is an increased interest in renewable and sustainable energy sources. The development of materials to efficiently catalyze the synthesis hydrogen at a reduced cost could have a transformational effect on our energy supply and economy. The project will also have impact through the education of students for careers in science and engineering. Undergraduates will be involved in this research through design groups working on a real world problems involving photochemistry.
非技术描述:某些陶瓷材料可以催化水光解并从水和阳光中产生氢气。 作为未来的燃料,氢特别有吸引力,因为它的能量密度是石油的三倍,而且其燃烧不会产生危险的排放物、温室气体或放射性副产品。虽然光解氢产生的电力是可持续的,并且不会产生有毒或放射性副产品,但它也比使用化石或核燃料的传统系统产生的电力更昂贵。这对科学家和工程师提出了令人兴奋的挑战,要求他们对我们的社会和环境的福祉产生真正有益和广泛的影响。 因此,这项研究的最终目标是加深对设计复合材料所需的理解,以更低成本合成光解氢。技术细节:先前的研究表明,当铁电 BaTiO3 基板上支撑二氧化钛薄膜时,其光化学反应性高于块状二氧化钛。 这种现象称为偶极场效应。偶极场效应可潜在地用于制造改进的光解催化剂、自清洁材料或用于光催化降解污染物的材料。 在任何此类技术发展的基础上,必须对反应性增强的机制有牢固的科学理解。 因此,当前项目的目标是开发偶极场效应的机械模型。 该研究以关于偶极场效应机制的两个假设为指导。 第一个是铁电基板内未完全屏蔽的场使二氧化钛覆盖层中的能带弯曲,从而使电子和空穴沿相反方向驱动。 第二个假设是,域存在一个理想的尺寸,通过提供足够的分离来最大化反应性,同时还防止去极化并提供足够的表面积。 这些假设正在通过理想化铁电//TiO2 异质结构的定量显微镜实验进行检验。 为了测试这些发现的普遍性,还进行了一些铁电//WO3 和铁电//Fe2O3 异质结构的探索性实验。该项目的结果将为证实偶极场效应的拟议机制提供必要的定量细节,从而为设计具有更高效率的复合光解催化剂提供科学依据。 随着能源价格上涨,人们对可再生和可持续能源的兴趣日益浓厚。 以降低的成本有效催化合成氢的材料的开发可能会对我们的能源供应和经济产生变革性的影响。 该项目还将通过对学生的科学和工程职业教育产生影响。 本科生将通过设计小组参与这项研究,研究涉及光化学的现实世界问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Rohrer其他文献

Gregory Rohrer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Rohrer', 18)}}的其他基金

Collaborative Research: DMREF: Uncovering Mechanisms of Grain Boundary Migration in Polycrystals for Predictive Simulations of Grain Growth
合作研究:DMREF:揭示多晶晶界迁移机制,用于晶粒生长的预测模拟
  • 批准号:
    2118945
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
High Throughput Experiments to Determine Structure-Performance Relationships for Oxide Photocatalysts
高通量实验确定氧化物光催化剂的结构-性能关系
  • 批准号:
    2016267
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Controlling Charges on Oxide Surfaces for Enhanced Photochemical Reactivity
控制氧化物表面的电荷以增强光化学反应性
  • 批准号:
    1609369
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
DMREF: Grain Growth Beyond Isotropic Models: Microstructure Evolution with Experimentally-Derived Interface Properties
DMREF:超越各向同性模型的晶粒生长:具有实验衍生界面属性的微观结构演化
  • 批准号:
    1628994
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Dual Beam Plasma Focused Ion Beam Scanning Electron Microscope to Accelerate the Materials Characterization
MRI:获取双束等离子体聚焦离子束扫描电子显微镜以加速材料表征
  • 批准号:
    1428480
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Workshop on Emerging Research in the Field of Ceramics, Carbon, Glasses and Composites (March 2012, DC area)
陶瓷、碳、玻璃和复合材料领域新兴研究研讨会(2012 年 3 月,华盛顿地区)
  • 批准号:
    1216415
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
The Influence of Charged Interfaces on the Enhanced Photochemical Reactivity of Composites
带电界面对增强复合材料光化学反应活性的影响
  • 批准号:
    1206656
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
REU Site: The Summer Institute for Nano- and Biomaterials Research at Carnegie Mellon University
REU 网站:卡内基梅隆大学纳米和生物材料研究夏季研究所
  • 批准号:
    1005076
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
REU Site: The Summer Institute for Nano- and Biomaterials Research at Carnegie Mellon University
REU 网站:卡内基梅隆大学纳米和生物材料研究夏季研究所
  • 批准号:
    0648976
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
MRSEC: Carnegie Mellon University Materials Research Science and Engineering Center
MRSEC:卡内基梅隆大学材料研究科学与工程中心
  • 批准号:
    0520425
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
    Cooperative Agreement

相似国自然基金

多源不确定性因素影响下场地地下水污染监测网优化问题研究
  • 批准号:
    42372279
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
河谷场地地震放大效应及对河谷边坡地震稳定性的影响
  • 批准号:
    52378335
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
考虑孔隙率变化影响的EK-PRB联合修复低渗场地重金属迁移机制及设计方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
场地因素对海底地震动特性影响研究
  • 批准号:
    52268076
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
职场地位的多面性及其动态影响机制的追踪研究
  • 批准号:
    71962015
  • 批准年份:
    2019
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Pump field probe magnetic field effect fluorescence microscopy for time-resolved radical pair detection in biological systems
用于生物系统中时间分辨自由基对检测的泵场探针磁场效应荧光显微镜
  • 批准号:
    23K26612
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
  • 批准号:
    10702126
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
  • 批准号:
    10746348
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Characterizing Evoked Potentials of Deep Brain Stimulation for Parkinson's Disease
表征帕金森病深部脑刺激的诱发电位
  • 批准号:
    10605370
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了