Osmotic Propulsion: The Osmotic Motor
渗透推进:渗透马达
基本信息
- 批准号:0754967
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-15 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-0754967BradyIntellectual Merit: The design of nanoengines that can convert stored chemical energyinto motion is a key transformative challenge of nanotechnology, especially for nano-engines that can operate autonomously. Recent experiments have demonstrated that it is possible to power the motion of nanoscale and microscale objects by using surface catalytic reactions so-called catalytic nanomotors. The precise mechanism responsible for this motion is not known, although a number of ideas have been put forth. This project involves a very simple mechanism is proposed: osmotic propulsion. A surface chemical reaction creates local concentration gradients of the reactive and product species which generate a net osmotic force on the motor. The motor is able to harness the ever present random thermal motion via a chemical reaction to achieve directed autonomous motion. This research demonstrates that such an 'osmotic' motor is possible and addresses such questions as: How fast can the motor move? How large of a force can it generate? How much 'cargo' can it carry? How much fluid can it pump? How can its motion be controlled and directed? What chemistry can be used? What is the efficiency of such an osmotic motor?Broader Impact: Osmotic propulsion provides a very simple and general means to convert chemical energy into mechanical motion and work. Exploiting the random thermal motion in colloidal systems via osmotic propulsion can revolutionize the design and operation of microfluidic and nanodevices, with applications in directed self-assembly of materials, thermal management of micro- and nanoprocessors, and the design and operation of chemical and biological sensors. This research will provide explicit prescriptions for the construction and operation of colloidal particles that can be used as osmotic motors. This fundamental and transformative study must be undertaken if we wish to enable many of the nano-scale technologies envisioned for the future: tiny medical 'nanobots' that can access human illness inside the body, at the cellular level, and repair it. Or devices that can sense their way through micro channels in 'lab on a chip' devices, stirring or separating nano-liters of chemicals. Or even a nano-motor that senses intrusion of a specific molecule, swims toward it, and closes a channel in the process triggering an alarm switch for biological contaminants. Any of these types of devices is possible provided the physics of motion at that scale is correctly understood and utilized. And finally, studies of autonomous motors may help to understand more generally chemomechanical transduction as occurs in biological systems, and also create novel artificial motors that mimic living organisms and which can be harnessed to perform useful tasks.
CBET-0754967Brady智力优点:能够将储存的化学能转化为运动的纳米发动机的设计是纳米技术的关键变革挑战,特别是对于可以自主运行的纳米发动机而言。最近的实验表明,可以通过使用表面催化反应(即所谓的催化纳米电机)为纳米级和微米级物体的运动提供动力。尽管已经提出了许多想法,但造成这种运动的确切机制尚不清楚。这个项目涉及一个非常简单的机制:渗透推进。表面化学反应产生反应物质和产物物质的局部浓度梯度,从而在电机上产生净渗透力。电机能够通过化学反应利用始终存在的随机热运动来实现定向自主运动。这项研究表明,这种“渗透”电机是可能的,并解决了以下问题:电机能移动多快?能产生多大的力量?它能承载多少“货物”?它可以泵送多少液体?如何控制和引导其运动?可以使用什么化学物质?这种渗透马达的效率是多少?更广泛的影响:渗透推进提供了一种非常简单且通用的方法,将化学能转化为机械运动和功。通过渗透推进利用胶体系统中的随机热运动可以彻底改变微流体和纳米器件的设计和操作,可应用于材料的定向自组装、微米和纳米处理器的热管理以及化学和生物传感器的设计和操作。这项研究将为可用作渗透马达的胶体颗粒的构建和操作提供明确的处方。如果我们希望实现未来设想的许多纳米级技术,就必须进行这项基础性和变革性的研究:微型医疗“纳米机器人”可以在细胞水平上了解人体内部的疾病并进行修复。 或者可以通过“芯片实验室”设备中的微通道进行感应,搅拌或分离纳升化学品的设备。或者甚至是一个纳米电机,它可以感知特定分子的入侵,游向它,并在此过程中关闭通道,从而触发生物污染物的警报开关。只要正确理解和利用该尺度的运动物理学,任何这些类型的设备都是可能的。最后,对自主电机的研究可能有助于更普遍地理解生物系统中发生的化学机械转导,并创造出模仿生物体并可用于执行有用任务的新型人造电机。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Brady其他文献
Understanding unique employability skill sets of autistic individuals: A systematic review
了解自闭症患者独特的就业技能:系统评价
- DOI:
10.1002/joec.12223 - 发表时间:
2024-03-11 - 期刊:
- 影响因子:1.6
- 作者:
A. Griffiths;Rachel Torres;Raquel Delgado;Amy E. HURLEY;Cristina Giannantonio;Wallace Walrod;Zachary D. Maupin;John Brady - 通讯作者:
John Brady
Beamspace MIMO prototype for low-complexity Gigabit/s wireless communication
用于低复杂度千兆位/秒无线通信的 Beamspace MIMO 原型
- DOI:
10.1109/spawc.2014.6941332 - 发表时间:
2014-06-22 - 期刊:
- 影响因子:0
- 作者:
John Brady;P. Thomas;Dave Virgilio;A. Sayeed - 通讯作者:
A. Sayeed
Beamspace MIMO Channel Modeling and Measurement: Methodology and Results at 28GHz
Beamspace MIMO 信道建模和测量:28GHz 的方法和结果
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
A. Sayeed;John Brady - 通讯作者:
John Brady
Environmental Management in Organizations: The IEMA Handbook
组织中的环境管理:IEMA 手册
- DOI:
10.4324/9780203597675 - 发表时间:
2011-06-24 - 期刊:
- 影响因子:0
- 作者:
John Brady;A. Ebbage;R. Lunn - 通讯作者:
R. Lunn
Spontaneous, circadian components of tsetse fly activity.
采采蝇活动的自发昼夜节律组成部分。
- DOI:
- 发表时间:
1972 - 期刊:
- 影响因子:2.2
- 作者:
John Brady - 通讯作者:
John Brady
John Brady的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Brady', 18)}}的其他基金
A Workshop to Share, Explore, Develop, and Evaluate Online Petrology Teaching Resources and Strategies in Varied and Evolving Geoscience Education Settings
在多样化和不断发展的地球科学教育环境中分享、探索、开发和评估在线岩石学教学资源和策略的研讨会
- 批准号:
2319132 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-DFG Confine: Chemically-induced phoretic flow, or how to turn a curtain of light into virtual micro-fluidic boundaries
NSF-DFG Confine:化学诱导泳流,或如何将光幕转变为虚拟微流体边界
- 批准号:
2223481 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
The Role of Hydrodynamics in the Behavior of Active Matter
流体动力学在活性物质行为中的作用
- 批准号:
1803662 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Building Analytical Competence for Geoscience Students through use of Spectroscopic Tools
通过使用光谱工具培养地球科学学生的分析能力
- 批准号:
1140444 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Microrheology of colloidal glasses and gels
合作研究:胶体玻璃和凝胶的微观流变学
- 批准号:
1236242 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Scanning Electron Microscope
MRI:购买扫描电子显微镜
- 批准号:
1039707 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Particle Motion in Colloidal Dispersions: Microrheology and Microdiffusivity
胶体分散体中的粒子运动:微流变学和微扩散性
- 批准号:
0931418 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Suspensions and Granular Media: Wet vs. Dry
悬浮液和颗粒介质:湿法与干法
- 批准号:
0828563 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
含梯度介质通道中的双面粒子的输运
- 批准号:11505128
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
HiPERMod- Higher performance modular dual motor propulsion system
HiPERMod-更高性能的模块化双电机推进系统
- 批准号:
10062818 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Failsafe Cryogenic Superconducting Motor for Propulsion in Mobility
用于移动推进的故障安全低温超导电机
- 批准号:
10058314 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Next Generation Axially Integrated Electric Motor Drives with Alternative Materials for Electrified Vehicle Propulsion
采用替代材料的下一代轴向集成电动机驱动器用于电动汽车推进
- 批准号:
RGPIN-2020-05818 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Design of a Wound Field Synchronous Motor for a Propulsion Application
用于推进应用的绕线式励磁同步电机的设计
- 批准号:
576529-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
Design of a Wound Field Synchronous Motor for a Propulsion Application
用于推进应用的绕线式励磁同步电机的设计
- 批准号:
576529-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants