Tb Theorems, Singular Integrals, Poisson Kernels, and Regularity of Boundaries

Tb 定理、奇异积分、泊松核和边界正则性

基本信息

  • 批准号:
    0801079
  • 负责人:
  • 金额:
    $ 27.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The PI plans to work on problems in harmonic analysis linked by the interplay among local Tb Theorems, singular integral estimates, Poisson kernel estimates, square function estimates, and the regularity of boundaries. The goals of the proposed research are:1) to develop and apply ``local" Tb theorems to study the regularity of free boundaries and the solvability of elliptic boundary value problems; 2) to develop techniques to study the solvability of boundary value problems for complex elliptic equations, or more generally, for strongly elliptic systems, with bounded measurable coefficients;3) to investigate the relationships among boundedness of layer potentials, properties of harmonic measure, and uniform rectifiability;4) to continue to develop the theory of Hardy spaces adapted to a second order divergence form elliptic operator; in particular, this work may be viewed as an attempt to find a sharp solution to the Kato square root problem ``below the critical exponent."The project lies within the field of harmonic analysis and its application to, and interaction with, geometric measure theory and the theory of elliptic partial differential equations and systems. Roughly speaking, in harmonic analysis one investigates properties of functions and ``operators" (i.e., mappings which transform one function into another) by decomposing them into smaller, constituent pieces, which are easier to understand, and then reassembling the pieces. The name itself arose by analogy to the decomposition of a musical sound into its various frequency components (``harmonics"). Geometric measure theory involves the study of the relationship between geometric properties of sets, and their ``measures" (the latter are generalizations of the notions of length, area, and volume). Partial differential equations and systems of elliptic type describe a wide variety of phenomena in the real world, including electrostatics, and steady-state temperature distributions and elastic deformations. In the last decade the interplay between these different subfields of mathematics has turned out to be a fertile ground for investigation, with much exciting work remaining to be done. Progress on the problems to be considered would in all likelihood open up further avenues of investigation in these areas. All such progress will be disseminated by the PI via lectures at conferences, seminars and graduate courses, and via electronic preprints posted on his website and on the ArXiv. The PI plans to involve two postdocs and two graduate students in work related to this project.
PI计划处理与本地结核病定理之间相互作用,奇异积分估计值,泊松内核估计值,平方函数估计以及边界规则性相关联的谐波分析问题。 拟议的研究的目标是:1)开发和应用``本地''结核病定理,以研究自由边界的规律性和椭圆边界价值问题的可溶性; 2)开发技术以研究为边界价值问题的解决性问题的解决性问题复杂的椭圆方程,或更普遍地用于强椭圆形系统,具有有界的可测量系数; 3)研究层势的界限之间的关系,谐波测量的特性和统一的重新讨论; 4)继续发展Hardy空间理论尤其是适应二阶差异的椭圆运算符;它的应用和与几何测量理论以及椭圆形偏微分方程和系统的理论相互作用。 粗略地说,在谐波分析中,一个人通过将它们分解为较小的组成部分,调查了功能的属性和``运算符''(即,将一个函数转换为另一个功能的映射),这些部分易于理解,然后重新组装零件。名称。名称。通过类比,音乐声音分解为各种频率组件(``谐波'')。 几何措施理论涉及集合几何特性之间的关系及其``措施''(后者是长度,面积和体积的概念的概括)。部分椭圆形类型的部分微分方程和系统描述了种类繁多的种类繁多现实世界中的现象,包括静电和稳态温度分布和弹性变形。在这些领域的可能性上,所有这些进度都将通过会议,研讨会和研究生课程在这些领域中揭示所有这些进度的进展。在Arxiv上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Hofmann其他文献

Steven Hofmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Hofmann', 18)}}的其他基金

Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
  • 批准号:
    2349846
  • 财政年份:
    2024
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Harmonic Analysis, Boundary Value Problems, and Parabolic Rectifiability
谐波分析、边值问题和抛物线可整流性
  • 批准号:
    2000048
  • 财政年份:
    2020
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Analysis in Missouri: a Midwestern Symposium
密苏里州的分析:中西部研讨会
  • 批准号:
    1901871
  • 财政年份:
    2019
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Rectifiability and Elliptic Partial Differential Equations
可修正性和椭圆偏微分方程
  • 批准号:
    1664047
  • 财政年份:
    2017
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
Uniform Rectifiability and Elliptic Equations
一致可整流性和椭圆方程
  • 批准号:
    1361701
  • 财政年份:
    2014
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
Uniform rectifiability, Singular Integrals and Harmonic Measure
均匀可整流性、奇异积分和谐波测量
  • 批准号:
    1101244
  • 财政年份:
    2011
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
Problems in harmonic analysis
谐波分析中的问题
  • 批准号:
    0245401
  • 财政年份:
    2003
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
Conference on Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程会议
  • 批准号:
    0222187
  • 财政年份:
    2002
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
  • 批准号:
    0088920
  • 财政年份:
    2000
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant

相似国自然基金

复方程的Malmquist型定理及相关问题的研究
  • 批准号:
    12301095
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非马尔科夫量子过程涨落定理理论研究
  • 批准号:
    12305035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
问题性手机使用的人工智能干预研究——基于自我决定理论和压力应对理论的双轨机制
  • 批准号:
    82304258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
局部相依结构下的自正则化及非自正则化的精细中心极限定理
  • 批准号:
    12301182
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
具有T性质的II_1型因子生成元问题和II_1型因子上Dixmier平均定理
  • 批准号:
    12371128
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Studies on singular Hermitian metrics via L2 theoretic methods and their applications to algebraic geometry
L2理论方法研究奇异埃尔米特度量及其在代数几何中的应用
  • 批准号:
    21K20336
  • 财政年份:
    2021
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Singular integral operators and special functions in scattering theory
散射理论中的奇异积分算子和特殊函数
  • 批准号:
    21K03292
  • 财政年份:
    2021
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Prikry-type forcings and its applications to singular cardinal combinatorics
Prikry 型强迫及其在奇异基数组合中的应用
  • 批准号:
    20J21103
  • 财政年份:
    2020
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis
奇异摄动型微分方程解的全局结构及精确WKB分析
  • 批准号:
    19H01794
  • 财政年份:
    2019
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Surface evolution equations with singular structure and boundary value problems
具有奇异结构和边值问题的表面演化方程
  • 批准号:
    19K14564
  • 财政年份:
    2019
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了