Collaborative Research: Geometric Time Integrators for Mechanical Dynamical Systems

合作研究:机械动力系统的几何时间积分器

基本信息

  • 批准号:
    0757106
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Time integrators are crucial computational tools for studying nonlinear dynamical systems. Numerous time stepping methods have been developed over the years, many of which are now available in off-the-shelf solvers. However energy drifts and numerical dissipation problems present even in highly accurate algorithms still routinely plague engineering applications. Geometric time integrators have been recently proven greatly useful to elucidate and fix these issues in solid mechanics. Yet these contributions have not carried over to the Eulerian setting, where they could impact both the understanding and the reliability of time integrators for computational fluid dynamics. The goal of this research project is thus to develop novel, geometrically-based Eulerian time integrators for the class of problems whose dynamics is described by an action principle, possibly including dissipation and forcing---which encompasses the canonical Euler and Navier-Stokes equations, as well as many other models. Eulerian discretizations of the Hamilton-Pontryagin principle will be explored, and combined with mathematical and numerical tools such as Discrete Exterior Calculus, the semigroup of positive doubly-stochastic matrices, and implicit functions. Resulting integrators are expected, just like in the Lagrangian setting, to respect the structure of the physics, i.e., to introduce no artificial numerical loss of crucial physical quantities such as energy or circulation.The proposed research activities aim at developing an infrastructure for predictive and high-order accurate simulations of fluid-mechanical systems that combine the power of modern applied geometry with modern computational mechanics. In particular, it promises the introduction of novel variational fluid simulation algorithms: this innovative computational approach relies on a multidisciplinary effort drawing upon techniques from geometric mechanics, discrete geometry, numerical analysis, and graphics, thus promising a broad theoretical and practical impact. The development of such variational integrators from a unified geometric standpoint represents a stepping stone for our long-term goal of solving complex physical phenomena such as a flowing dress, a swimming fish or splashing water, the simulation of which requires considerable improvement of the current state of the art to become commonplace. The research experience acquired during this project is to be disseminated to a wide range of audiences through publishing in mathematics, engineering and computer science journals, books, and conferences, as well as on our web sites, in summer schools, workshops, and other educational activities. Outreach efforts at our three institutions include the recruitment of students from underrepresented groups to help with this research project, leveraging existing efforts for enhancing the participation of women and minorities in scientific research.
时间积分器是研究非线性动力系统的重要计算工具。多年来已经开发了许多时间步长方法,其中许多现在可在现成的求解器中使用。然而,即使在高精度算法中,能量漂移和数值耗散问题仍然经常困扰着工程应用。最近被证明几何时间积分器对于阐明和解决固体力学中的这些问题非常有用。然而,这些贡献并没有延续到欧拉环境,它们可能会影响计算流体动力学时间积分器的理解和可靠性。因此,该研究项目的目标是开发新颖的、基于几何的欧拉时间积分器,用于解决其动力学由作用原理描述的问题,可能包括耗散和强迫——其中包含规范的欧拉和纳维-斯托克斯方程,以及许多其他型号。将探索 Hamilton-Pontryagin 原理的欧拉离散化,并结合数学和数值工具,例如离散外微积分、正双随机矩阵半群和隐函数。正如拉格朗日设置一样,最终的积分器预计会尊重物理学的结构,即不会引入能量或循环等关键物理量的人为数值损失。拟议的研究活动旨在开发用于预测和预测的基础设施流体机械系统的高阶精确模拟,将现代应用几何的力量与现代计算力学相结合。特别是,它承诺引入新颖的变分流体模拟算法:这种创新的计算方法依赖于利用几何力学、离散几何、数值分析和图形技术的多学科努力,从而有望产生广泛的理论和实践影响。从统一的几何角度出发开发这种变分积分器是我们解决复杂物理现象(例如飘逸的衣服、游动的鱼或溅起的水)的长期目标的垫脚石,这些现象的模拟需要对当前状态进行相当大的改进艺术变得司空见惯。在该项目期间获得的研究经验将通过在数学、工程和计算机科学期刊、书籍和会议以及我们的网站、暑期学校、研讨会和其他教育活动中出版来传播给广泛的受众活动。我们三个机构的外展工作包括从代表性不足的群体中招募学生来帮助开展该研究项目,利用现有的努力来加强妇女和少数族裔对科学研究的参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mathieu Desbrun其他文献

High-Order Moment-Encoded Kinetic Simulation of Turbulent Flows
湍流的高阶矩编码动力学模拟
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Wei Li;Tongtong Wang;Zherong Pan;Xifeng Gao;Kui Wu;Mathieu Desbrun
  • 通讯作者:
    Mathieu Desbrun

Mathieu Desbrun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mathieu Desbrun', 18)}}的其他基金

EAGER: Collaborative Research: Towards Robust and Scalable Hexahedral Meshing
EAGER:协作研究:实现稳健且可扩展的六面体网格划分
  • 批准号:
    1655306
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AF: Large: Eulerian Computational Mechanics through Variational Principles
AF:大:通过变分原理的欧拉计算力学
  • 批准号:
    1011944
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CPA-G&V: Eigengeometry: Geometric Spectral Computing for Computer Graphics and Computational Science
合作研究:CPA-G
  • 批准号:
    0811373
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Compression of Geometry Datasets
合作研究:几何数据集的压缩
  • 批准号:
    0503788
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Modeling and Processing of Topologically Complex 3D Shapes
合作研究:拓扑复杂 3D 形状的建模和处理
  • 批准号:
    0503787
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Fast, Predictive Modeling and Simulation in Computer Graphics: Theoretical and Computational Foundations
职业:计算机图形学中的快速预测建模和仿真:理论和计算基础
  • 批准号:
    0503786
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR - (ASE) - (sim): Discrete Differential Calculus (DDC)
ITR - (ASE) - (sim):离散微分微积分 (DDC)
  • 批准号:
    0453145
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Processing of Topologically Complex 3D Shapes
合作研究:拓扑复杂 3D 形状的建模和处理
  • 批准号:
    0221666
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Fast, Predictive Modeling and Simulation in Computer Graphics: Theoretical and Computational Foundations
职业:计算机图形学中的快速预测建模和仿真:理论和计算基础
  • 批准号:
    0133983
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Compression of Geometry Datasets
合作研究:几何数据集的压缩
  • 批准号:
    0221669
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

面向大跨桥梁施工监控的激光-图像融合几何形态感知方法研究
  • 批准号:
    52308306
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于信息几何的超大规模MIMO传输理论方法研究
  • 批准号:
    62371125
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
复流形上蒙日-安培型方程理论以及几何问题的研究
  • 批准号:
    12371078
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于环形光栅的转轴几何误差动态同时测量方法与关键技术研究
  • 批准号:
    52375523
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于深度几何学习的药物靶点跨膜蛋白结合作用域结构指纹研究
  • 批准号:
    62372099
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
  • 批准号:
    2350374
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
  • 批准号:
    2350373
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
  • 批准号:
    2409888
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246611
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了