CAREER: Seismic Imaging of the Earth's Mid-Mantle, the Deep Inner Core and Stress Transients
职业:地球中地幔、深层内核和应力瞬变的地震成像
基本信息
- 批准号:0748455
- 负责人:
- 金额:$ 54.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal seeks to make significant progress in our basic understanding of deep processes that are related to the formation and evolution of the Earth's inner core and mantle heterogeneities. Another successful outcome of the proposed work could also constitute a major step towards monitoring subsurface stress transients that accompany and perhaps precede seismic activity. This proposal will promote seismology studies for undergraduates and raise public awareness and readiness for large earthquakes and tsunamis.The Earth's mantle and core are characterized by thermal and chemical heterogeneities at all length scales. Seismology provides a powerful means of exploring these heterogeneities. The PI intends to take advantage of recent developments in passive seismic observations and imaging techniques to map out seismic heterogeneities. This will enhance our understanding of deep Earth processes that are related to formation and evolution of the Earth's interior. The research will focus on the structure of the middle mantle and the innermost part of the inner core, as they are relatively less well studied than the rest of the Earth's interior. Yet, they are very important for understanding mantle convective circulation as well as the formation and evolution of the core. Travel time tomography has been the most efficient tool to image 3D velocity variations in the mantle. Many tomographic images reveal a mantle that can be in general divided into three domains. A relatively homogeneous middle mantle is sandwiched by two strong heterogeneous layers, the uppermost and lowermost mantle. Using converted waves from deep earthquakes several studies, including the PI's, have found the existence of mid-mantle reflectors associated with subduction zones. In general seismic reflectors in the mantle result from abrupt changes in composition, mineral phase, anisotropic structure, and or partial melt accumulation. Their distribution closely reflects the compositional, thermal and dynamic state of the mantle, providing critical complementary information to tomography. I plan to apply and reformulate existing imaging techniques, such as Kirchhoff migration and generalized radon transform methods to SS reflections, P to S, and S to P conversion data to improve images of Earth's middle mantle. In addition to studying the mantle structure, I will also research the nature of the innermost inner core. Compared to the top ~400 km of the inner core, the deep part of the inner core is less well known because of the inapplicability of the reference phase method commonly used in inner core studies. I have found a new reference phase, PKIIKP, which is observable at antipodal distances and can be used to study seismic structure in the center of the Earth. I propose to extend the search for PKIIKP to all the available array data. In particular I will start to analyze array data of deep earthquakes occurring in South America recorded by regional networks of the China Earthquake Administration. Another focus of my research involves understanding the time-varying stress field at seismogenic depths. This is perhaps the single most crucial parameter for understanding the earthquake triggering process. Measuring stress changes within seismically active fault zones has been a long-sought goal of seismology. It is well known from laboratory experiments that seismic velocities vary with the level of the applied stress. In principle, this dependence constitutes a stress meter, provided that the induced velocity changes can be measured precisely and continuously. In collaborating with scientists from Carnegie Institution of Washington (CIW) and Lawrence Berkeley National Laboratory (LBNL), I have conducted several continuous active source cross-well experiments to measure in situ seismic velocity changes along fixed baselines at Earth's surface and seismogenic depths. In either case we have demonstrated that stress changes such as variations in barometric pressure are detectable. Especially at the SAFOD drill site (San Andreas Fault Observatory at Depth) we observed co-seismic velocity changes from two earthquakes and preseismic velocity changes that might be related to pre-rupture dilatancy. In order to verify these observations, I propose to conduct a series of controlled source experiments at SAFOD and other segments of the San Andreas Fault. I also plan to develop time-lapse seismic imaging (4D) techniques for the detection of seismic and magmatic crustal stress changes.In terms of education, I propose four major activities: (1) utilize an on-campus seismograph to promote students' appreciation to seismology and Earth science; (2) promote seismology in local community colleges and displaying modern seismograph at local science museum to raise public awareness and readiness for large earthquakes and tsunamis; (3) develop a new introductory geophysics course "An Introduction of Plate tectonics, Earthquakes and Volcanoes" for major and non-major undergraduates, (4) provide research activities for undergraduate students.
该提案旨在在我们对与地球内核和地幔异质性的形成和演化相关的深层过程的基本理解方面取得重大进展。拟议工作的另一个成功成果也可能构成监测伴随或可能先于地震活动的地下应力瞬变的重要一步。该提案将促进本科生的地震学研究,并提高公众对大地震和海啸的认识和准备。地幔和地核在所有长度尺度上都具有热和化学不均匀性的特征。 地震学提供了探索这些异质性的有力手段。 PI 打算利用被动地震观测和成像技术的最新发展来绘制地震非均质性。 这将增强我们对与地球内部形成和演化相关的地球深层过程的理解。研究将集中在中地幔和内核最里面的结构上,因为与地球内部其他部分相比,对它们的研究相对较少。然而,它们对于理解地幔对流循环以及地核的形成和演化非常重要。 走时断层扫描是对地幔 3D 速度变化进行成像的最有效工具。许多断层扫描图像显示地幔通常可分为三个区域。相对均匀的中地幔夹在两个强异质层之间,即最上地幔和最下地幔。利用深部地震的转换波,包括 PI 在内的几项研究发现了与俯冲带相关的中地幔反射体的存在。一般来说,地幔中的地震反射体是由成分、矿物相、各向异性结构和/或部分熔体堆积的突然变化引起的。它们的分布密切反映了地幔的成分、热和动态状态,为断层扫描提供了关键的补充信息。我计划应用和重新表述现有的成像技术,例如基尔霍夫偏移和广义氡变换方法,用于 SS 反射、P 到 S 和 S 到 P 转换数据,以改善地球中地幔的图像。 除了研究地幔结构之外,我还会研究最里面的内核的性质。 与内核顶部~400 km相比,由于内核研究中常用的参考相位法不适用,内核深部不太为人所知。我发现了一个新的参考相位 PKIIKP,它可以在对映距离处观测到,可用于研究地心的地震结构。我建议将对 PKIIKP 的搜索扩展到所有可用的数组数据。特别是我将开始分析中国地震局区域台网记录的南美深部地震阵列数据。我研究的另一个重点是了解地震发生深度随时间变化的应力场。这可能是理解地震触发过程的最关键的参数。测量地震活动断层带内的应力变化一直是地震学长期追求的目标。从实验室实验中众所周知,地震速度随施加应力的水平而变化。原则上,只要能够精确、连续地测量引起的速度变化,这种依赖性就构成了应力计。我与华盛顿卡内基研究所 (CIW) 和劳伦斯伯克利国家实验室 (LBNL) 的科学家合作,进行了多次连续主动源跨井实验,以测量沿着地球表面和地震发生深度的固定基线的原位地震速度变化。无论哪种情况,我们都证明了压力变化(例如气压变化)是可以检测到的。特别是在 SAFOD 钻探现场(圣安德烈亚斯断层深度观测站),我们观察到了两次地震的同震速度变化以及可能与破裂前剪胀有关的震前速度变化。为了验证这些观察结果,我建议在 SAFOD 和圣安德烈亚斯断层的其他部分进行一系列受控源实验。我还计划开发时移地震成像(4D)技术,用于检测地震和岩浆地应力变化。在教育方面,我提出四项主要活动:(1)利用校园地震仪来提高学生的欣赏能力地震学和地球科学; (2) 在当地社区学院推广地震学,并在当地科学博物馆展示现代地震仪,以提高公众对大地震和海啸的认识和准备; (3)为专业和非专业本科生开发新的地球物理学入门课程“板块构造、地震和火山概论”,(4)为本科生提供研究活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fenglin Niu其他文献
A displaced lower mantle source of the Hainan plume in South China revealed by receiver function imaging of the CEArray
CEArray接收函数成像揭示华南海南地幔柱错位下地幔源区
- DOI:
10.1029/2023gc011292 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:3.7
- 作者:
Yan Zhang;Fenglin Niu;J. Ning;Chunquan Yu - 通讯作者:
Chunquan Yu
Local events-based fast RTM surface-offset gathers via dip-guided interpolation
通过倾角引导插值进行基于局部事件的快速 RTM 表面偏移道集
- DOI:
10.1007/s12182-021-00557-y - 发表时间:
2020-06-09 - 期刊:
- 影响因子:5.6
- 作者:
Yang Zhao;Fenglin Niu;L. Fu;Cheng Cheng;Jinhong Chen;S. Huo - 通讯作者:
S. Huo
Spatial variations of the 660-km discontinuity in the western Pacific subduction zones observed from CEArray triplication data
CEArray三倍数据观测到的西太平洋俯冲带660公里不连续面的空间变化
- DOI:
10.1007/s11589-011-0771-9 - 发表时间:
- 期刊:
- 影响因子:1.2
- 作者:
Fenglin Niu;王宝善 - 通讯作者:
王宝善
Topography of the 660-km discontinuity beneath northeast China : Implications for a retrograde motion of the subducting Pacific slab
中国东北下方 660 公里不连续面的地形:对俯冲太平洋板片逆行运动的影响
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Juan Li;Fenglin Niu;Qi-fu Chen - 通讯作者:
Qi-fu Chen
Measurements of Seismometer Orientation of the 1st Phase CHINArray and their Implications on Vector-recording-based Seismic Studies
第一相 CHINArray 地震仪方位测量及其对基于矢量记录的地震研究的意义
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Sijia Zeng;Yong Zheng;Fenglin Niu;Sanxi Ai - 通讯作者:
Sanxi Ai
Fenglin Niu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fenglin Niu', 18)}}的其他基金
Collaborative Research: Seismic Investigation of Slab Structure and Back Arc Volcanism in the Sea of Japan Region
合作研究:日本海地区板状构造和弧后火山活动的地震调查
- 批准号:
1547228 - 财政年份:2015
- 资助金额:
$ 54.87万 - 项目类别:
Continuing Grant
Collaborative Research: Imaging Stress Transients and Fault Zone Processes with Continuous Cross-Well Active Source Seismic Measurements at SAFOD
合作研究:通过 SAFOD 连续井间主动源地震测量对应力瞬变和断层带过程进行成像
- 批准号:
1251667 - 财政年份:2014
- 资助金额:
$ 54.87万 - 项目类别:
Continuing Grant
Collaborative Research: NorthEast China Extended seiSmic Array (NECESS Array): Deep Subduction, Mantle Dynamics, and Lithospheric Evolution beneath Northeast China
合作研究:中国东北扩展地震台阵(NECESS Array):中国东北地区深俯冲、地幔动力学和岩石圈演化
- 批准号:
0635666 - 财政年份:2007
- 资助金额:
$ 54.87万 - 项目类别:
Continuing Grant
Collaborative Research: Developing a Methodology for Imaging Stress Transients at Seismogenic Depth: Data Analysis and Interpretation
合作研究:开发震源深度应力瞬变成像方法:数据分析和解释
- 批准号:
0453471 - 财政年份:2005
- 资助金额:
$ 54.87万 - 项目类别:
Standard Grant
Collaborative Research: Developing a Methodology for Imaging Stress Transients at Seismogenic Depth
合作研究:开发震源深度应力瞬变成像方法
- 批准号:
0352134 - 财政年份:2004
- 资助金额:
$ 54.87万 - 项目类别:
Standard Grant
Collaborative Research: Seismic Imaging of Aseismic Transients
合作研究:地震瞬变的地震成像
- 批准号:
0409024 - 财政年份:2004
- 资助金额:
$ 54.87万 - 项目类别:
Standard Grant
相似国自然基金
负泊松比复合钢板剪力墙地震–爆炸动力灾变性能及协同设计理论研究
- 批准号:52378179
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于自复位混合阻尼实现钢框架综合韧性提升的多性态地震响应机理与设计调控方法研究
- 批准号:52378182
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
岩石非线性粘弹本构关系研究及基于密集地震台阵数据的应用
- 批准号:42374146
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
冰岩斜坡地震非协调变形与拉剪破裂机制研究
- 批准号:42377194
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
甘孜-玉树断裂带现今构造运动及地震动力学模拟研究
- 批准号:42374003
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
DarkSeis: Seismic Imaging Of The Urban Subsurface Using Dark Fibre
DarkSeis:使用暗光纤对城市地下进行地震成像
- 批准号:
EP/Y020960/1 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Research Grant
Multi-scale seismic imaging of the crust and mantle beneath Iceland
冰岛下方地壳和地幔的多尺度地震成像
- 批准号:
2885515 - 财政年份:2023
- 资助金额:
$ 54.87万 - 项目类别:
Studentship
Collaborative Research: High-resolution imaging of the Elgin-Lugoff earthquake swarm sequence and subsurface structures in South Carolina using a dense seismic nodal array
合作研究:使用密集地震节点阵列对南卡罗来纳州埃尔金-卢戈夫地震群序列和地下结构进行高分辨率成像
- 批准号:
2321095 - 财政年份:2023
- 资助金额:
$ 54.87万 - 项目类别:
Standard Grant
Collaborative Research: High-resolution imaging of the Elgin-Lugoff earthquake swarm sequence and subsurface structures in South Carolina using a dense seismic nodal array
合作研究:使用密集地震节点阵列对南卡罗来纳州埃尔金-卢戈夫地震群序列和地下结构进行高分辨率成像
- 批准号:
2321094 - 财政年份:2023
- 资助金额:
$ 54.87万 - 项目类别:
Standard Grant
Collaborative Research: Investigating intraplate melting processes in northwest New Zealand with seismic imaging
合作研究:利用地震成像研究新西兰西北部的板内熔融过程
- 批准号:
2241064 - 财政年份:2023
- 资助金额:
$ 54.87万 - 项目类别:
Continuing Grant