Collaborative research MSPA-ENG: Dynamics of interfacial domains

合作研究 MSPA-ENG:界面域动力学

基本信息

  • 批准号:
    0730626
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

Proposal Number: CBET-0730626 Principal Investigator: James C. AlexanderUniversity/Institution: Case Western Reserve Univ.Title: Collaborative Research MSPA-ENG: Dynamics of Interfacial Domains This is a collaborative project with CBET-0730475/ Kent, and 0730630 / Harvey Mudd College.This project aims to quantitatively characterize, by linking experiment to mathematical and numerical analysis, domain dynamics within molecularly thin layers confined at the fluid/fluid interface (Langmuir layers). Motion within these layers is confined to the plane of the surface, and thus in two dimensions. However, molecular configurations can change freely with respect to the surface, and the layer can buckle out of the surface. Such layers present an enormous richness of surface phases: gases and liquids, liquid crystals, and elastic "solids." Experimental developments over the last 15 years have allowed a much clearer understanding of these phases. Dynamic processes, while essential to characterize macro-and mesoscopic properties of the film, prove much more difficult to measure experimentally and understand quantitatively through mathematical analysis. The dynamics in these layers are important due to the analogue dynamics controlling cell membrane processes, but also because they are probes into the physical-chemical nature of the Langmuir layer. The PIs begin by describing their new results for dynamics within fluid monolayers, as the domains move towards equilibrium shape and size. Hydrodynamic flow involves motion within the Langmuir layer, but also within the subfluid, where it may not be parallel to the surface. Preliminary results from the group explore cases that show how combining high-quality experiments, detailed knowledge of surface chemistry, careful dimensional analysis, mathematical modeling, analytical techniques, intelligently-designed numerical methods and data analysis allows a deeper understanding of the physics of these problems. With comparisons between simulations and experiment going far beyond small perturbations in shape and size by application of our 4-roll mill technology, they will improve both accuracy and precision on measurements of the line tension, a critical parameter for both dynamics and layer morphology. They will also explore beyond the line tension, to include the effect of electrostatics and the compressibility of the layer. For this comparison, they will refine the experiment, include electrostatic and other contributions to the analysis, and develop the numerical analysis. As the project develops, they will reach beyond fluid-monolayer systems, in particular to those involving elastic solids that buckle out of the plane. Intellectual Merit. Langmuir monolayers provide an experimentally accessible two-dimensional system, which require a combination of careful experiment, analysis, and simulation to probe effectively. Dynamic processes within these layers have been difficult to analyze, both experimentally and theoretically. The principle investigators in this project have demonstrated that in collaboration, they can identify useful cases in which theories amenable to numerical analysis can be developed and compared to the corresponding experiment. This project will deepen and extend that approach. We have improved both the precision and the accuracy of measurements of the line tension by more than an order of magnitude. This will allow them to directly probe the effect of long-range forces on this parameter, and to explore the effect of temperature and composition, including line-active molecules, on the line tension, which plays a critical role on the morphology within the Langmuir layer and its analogues. Broader Impact. Dynamics within molecularly thin layers is critical for understanding such systems as biological membranes. The recognition of the functional importance of domains in biological cell membranes grows exponentially: domains may sequester proteins needed for signaling or provide structural conditions for shape changes. Langmuir monolayers provide a model system for all such layers. Furthermore, the domain size is potentially controllable over a wide range of sizes from the nano to the micro scales, so that arrays of domains with different physical and chemical properties can be formed by transferring the Langmuir layer to a solid substrate, providing more control than possible with self-assembled monolayers. The students in this project will be involved in a project that cuts across three disciplines (physics, chemical engineering and mathematics), and experience the value of combining different approaches to a common problem with both fundamental and practical implications. Both undergraduate and graduate students are included in this project, and the group also has a history of deep commitment to involving underrepresented groups in their research. (The E.K. Mann group, for example, is headed by a woman.)
提案编号:CBET-0730626 首席研究员:James C. Alexander大学/机构:凯斯西储大学。标题:协作研究 MSPA-ENG:界面域动力学 这是与 CBET-0730475/ Kent 和 0730630/Harvey Mudd 的合作项目学院。该项目旨在通过将实验与数学和数值分析联系起来,定量表征领域动态限制在流体/流体界面的分子薄层(朗缪尔层)。这些层内的运动被限制在表面平面内,因此是二维的。然而,分子构型可以相对于表面自由改变,并且该层可以从表面弯曲。这些层呈现出极其丰富的表面相:气体和液体、液晶和弹性“固体”。过去 15 年的实验发展让人们对这些阶段有了更清晰的了解。动态过程虽然对于表征薄膜的宏观和细观特性至关重要,但事实证明,通过实验测量和通过数学分析定量理解要困难得多。这些层的动力学非常重要,因为它们是控制细胞膜过程的模拟动力学,而且还因为它们是朗缪尔层物理化学性质的探针。 PI 首先描述了流体单层内动力学的新结果,因为域朝着平衡形状和尺寸移动。流体动力流涉及朗缪尔层内的运动,但也涉及子流体内的运动,其中它可能不平行于表面。该小组的初步结果探索了一些案例,这些案例展示了如何将高质量的实验、表面化学的详细知识、仔细的尺寸分析、数学建模、分析技术、智能设计的数值方法和数据分析相结合,以便更深入地了解这些问题的物理原理。通过应用我们的 4 辊研磨技术,模拟和实验之间的比较远远超出形状和尺寸的小扰动,它们将提高线张力测量的准确性和精确度,线张力是动态和层形态的关键参数。他们还将探索线张力之外的内容,包括静电效应和层的可压缩性。为了进行比较,他们将完善实验,包括静电和其他对分析的贡献,并进行数值分析。随着项目的发展,它们将超越流体单层系统,特别是那些涉及从平面弯曲的弹性固体的系统。智力优点。朗缪尔单分子层提供了一种实验上可访问的二维系统,需要结合仔细的实验​​、分析和模拟才能有效地探测。无论是在实验上还是在理论上,这些层内的动态过程都很难分析。该项目的主要研究人员已经证明,通过合作,他们可以识别有用的案例,在这些案例中可以开发适合数值分析的理论并与相应的实验进行比较。该项目将深化和扩展这种方法。我们将线张力测量的精度和准确度提高了一个数量级以上。这将使他们能够直接探测远程力对该参数的影响,并探索温度和成分(包括线活性分子)对线张力的影响,这对朗缪尔内部的形态起着关键作用层及其类似物。更广泛的影响。分子薄层内的动力学对于理解生物膜等系统至关重要。对生物细胞膜中结构域功能重要性的认识呈指数级增长:结构域可能会隔离信号传导所需的蛋白质或为形状变化提供结构条件。 Langmuir 单分子层为所有此类层提供了模型系统。此外,域尺寸可以在从纳米到微米尺度的广泛尺寸范围内控制,因此可以通过将朗缪尔层转移到固体基底上来形成具有不同物理和化学性质的域阵列,从而提供比可以通过自组装单层膜实现。该项目的学生将参与一个跨越三个学科(物理、化学工程和数学)的项目,并体验将不同方法结合起来解决具有基本和实际意义的常见问题的价值。该项目包括本科生和研究生,该小组也一直致力于让代表性不足的群体参与其研究。 (例如,E.K. Mann 集团的领导者是一位女性。)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J. Adin Mann, Jr.其他文献

J. Adin Mann, Jr.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J. Adin Mann, Jr.', 18)}}的其他基金

Increasing the Computational Capabilities in the Chemical Engineering Department Through Implementation of Apl (A Programming Language)
通过实施 Apl(编程语言)提高化学工程系的计算能力
  • 批准号:
    7703082
  • 财政年份:
    1977
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop on the Fluid Mechanics, Structure and Function of Interfacial Regions to Be Held in Cleveland, Ohio During December 1975
界面区域的流体力学、结构和功能研讨会将于 1975 年 12 月在俄亥俄州克利夫兰举行
  • 批准号:
    7603022
  • 财政年份:
    1975
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732196
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative research MSPA-ENG: Dynamics of interfacial domains
合作研究 MSPA-ENG:界面域动力学
  • 批准号:
    0730630
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732169
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732299
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732318
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了