Modal Identification by Decomposition Methods
通过分解方法进行模态识别
基本信息
- 批准号:0727838
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This work is in the area of structural vibrations. New methods will be developed for interpreting test data in order to understand structural vibration properties, with potential applications to aerospace, civil, and mechanical systems.The goal of this proposal is to develop decomposition methods for performing experimental modal analysis. The decomposition methods are performed without measured input signals, which broadens their appeal for modal analysis. The work involves the new state-variable modal decomposition (SVMD), the proper orthogonal decomposition (POD) and the smooth orthogonal decomposition (SOD). In the proposed SVMD, a data-based eigenvalue problem is constructed and related to the generalized eigenvalue problem associated with free-vibration solutions of the state-variable formulation of linear multi-degree-of-freedom systems. The eigenvalues lead to estimates of frequencies and modal damping. The eigenvectors lead to estimates of the mode shapes. The interpretation holds for linear systems with multi-modal freeresponses, whether damping is large or small, modal or nonmodal, and without the need of input data. The connection of the decomposition to the state-variable differential equations provides insight into the application under random excitation. This insight carries over to SOD. Also, the POD is developed to accommodate general mass distributions.Decomposition methods are easy, and need no measured inputs, enabling engineers to master the process with very little learning curve, using basic packages of numerical software, such as Matlab. Since measured inputs are not needed, the process will be enabled on flexible structures and also inaccessible processes, for example the vibrations of a bridge under random excitation of traffic or wind. The extension of these tools to random excitation further broadens the applicability, and accommodates, for example, the turbulence loading on an airplane wing in the wind tunnel or during flight. The direct modal damping estimations of the SVMD are applicable to structures with larger damping than most current approaches. The project will support a doctoral student to learn state-variable modeling, random vibration, signal processing, and experimental instrumentation, in addition to course-work learning required in the doctoral program. Under-represented minorities, women, and economically disadvantaged students will be sought through the MSU Engineering Diversity Office. An undergraduate student will assist in setting up, instrumenting and running experiments. The PI will take part in an MSU summer program for middle schoolers, Mathematics Science and Technology (MST), by co-teaching a 'Mechanical Engineering' class.
这项工作属于结构振动领域。 将开发新的方法来解释测试数据,以了解结构振动特性,并在航空航天、民用和机械系统中具有潜在的应用。该提案的目标是开发用于执行实验模态分析的分解方法。 分解方法无需测量输入信号即可执行,这扩大了它们对模态分析的吸引力。 该工作涉及新的状态变量模态分解(SVMD)、适当正交分解(POD)和平滑正交分解(SOD)。 在所提出的 SVMD 中,构建了基于数据的特征值问题,并将其与与线性多自由度系统状态变量公式的自由振动解相关的广义特征值问题相关联。特征值导致频率和模态阻尼的估计。 特征向量导致模态振型的估计。 该解释适用于具有多模态自由响应的线性系统,无论阻尼是大还是小、模态还是非模态,并且不需要输入数据。 分解与状态变量微分方程的联系提供了对随机激励下应用的深入了解。这种见解也适用于 SOD。 此外,POD 的开发是为了适应一般的质量分布。分解方法很简单,不需要测量输入,使工程师能够使用基本的数值软件包(例如 Matlab)以很少的学习曲线掌握该过程。 由于不需要测量输入,因此该过程将在柔性结构和难以访问的过程上启用,例如交通或风的随机激励下桥梁的振动。 这些工具扩展到随机激励进一步拓宽了适用性,并适应例如风洞中或飞行期间飞机机翼上的湍流载荷。 SVMD 的直接模态阻尼估计适用于阻尼比大多数当前方法更大的结构。 除了博士课程所需的课程学习外,该项目还将支持博士生学习状态变量建模、随机振动、信号处理和实验仪器。密歇根州立大学工程多样性办公室将寻找代表性不足的少数族裔、女性和经济弱势学生。 本科生将协助设置、安装和运行实验。 该 PI 将参加密歇根州立大学针对中学生的暑期课程——数学科学与技术 (MST),并共同教授“机械工程”课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Feeny其他文献
Brian Feeny的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Feeny', 18)}}的其他基金
Vertical-Axis Wind Turbine Blade Vibration Modeling for Improved Reliability
垂直轴风力涡轮机叶片振动建模以提高可靠性
- 批准号:
1435126 - 财政年份:2014
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Coupled Blade-Hub Dynamics in Large Horizontal-Axis Wind Turbines
大型水平轴风力发电机中的叶片-轮毂耦合动力学
- 批准号:
1335177 - 财政年份:2013
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
A Positive Effect of Negative Stiffness: Wave Behavior and Energy Management
负刚度的积极影响:波浪行为和能量管理
- 批准号:
1030377 - 财政年份:2010
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Nonlinear Dynamic Loadings and Responses for Wind Turbine Reliability
风力发电机可靠性的非线性动态载荷和响应
- 批准号:
0933292 - 财政年份:2009
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Proper Orthogonal Decomposition as an Experimental Modal Analysis Tool
作为实验模态分析工具的适当正交分解
- 批准号:
0099603 - 财政年份:2001
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
GOALI/IUCP: Nonlinear Dynamic Models of Material Flow in High-Speed Machining
GOALI/IUCP:高速加工中材料流的非线性动态模型
- 批准号:
9800323 - 财政年份:1998
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
CAREER: Developing Tools of Modern Dynamical Systems for Modeling Dry Friction
职业:开发用于模拟干摩擦的现代动力系统工具
- 批准号:
9624347 - 财政年份:1996
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
相似国自然基金
基于TLC铝箔电导辅助激光蒸发电离质谱的山茶油真实性快速鉴别机制研究
- 批准号:32302223
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于植物源与动物源特征性成分相互作用的蜂蜜真实性鉴别研究
- 批准号:32372428
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
建立单链DNA连接靶向双组学测序技术用于肺结节良恶性鉴别诊断的研究
- 批准号:82302652
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于生长轨迹的儿童性早熟风险因素早期识别与临床鉴别诊断的纵向数据预测模型研究
- 批准号:82373691
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
西湖龙井核心产区真实性即时深度鉴别用离子增效纳米卟啉可视化阵列的构筑
- 批准号:32302192
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of the measurement, identification and quantification methods for investigating nanoplastic dynamics from terrestrial to atmospheric environments
开发用于研究从陆地到大气环境的纳米塑料动力学的测量、识别和量化方法
- 批准号:
22KJ1953 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Single-cell analysis and identification of inflammatory osteoclasts responsible for the pathophysiology of rheumatoid arthritis
负责类风湿性关节炎病理生理学的炎症破骨细胞的单细胞分析和鉴定
- 批准号:
21K08464 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an identification method of functionality from alpha-pinene oxidation using an accurate corona discharge ionization collision-induced dissociation mass spectrometry
使用精确的电晕放电电离碰撞诱导解离质谱法开发 α-蒎烯氧化功能的鉴定方法
- 批准号:
21K12223 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for identification of rubber-decomposing gene which is included in rubber-decomposing bacteria
橡胶分解菌中橡胶分解基因的鉴定研究
- 批准号:
21K04329 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a universal genomic method for the species identification and phylogenetic analysis of parasitic worms
开发用于寄生虫物种鉴定和系统发育分析的通用基因组方法
- 批准号:
21H02725 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)