Analyzing Polynomial Systems using Cayley-Dixon Resultant Matrices based on Support Hull
使用基于支撑船体的 Cayley-Dixon 结果矩阵分析多项式系统
基本信息
- 批准号:0729097
- 负责人:
- 金额:$ 21.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in application domains including engineering design, robotics, inverse kinematics, graphics, solid modeling, CAD-CAM design, geometric construction, molecular biology, drug-design, and control theory, can be modeled using parametric polynomial systems with many variables. Solving multivariate polynomial systems, especially symbolically, is however a major challenge. Whenever successful, symbolic methods have considerable advantage over numerical methods, since a symbolic solution has to be computed only once whereas numerical solutions must be computed every time parameter values change. Experimental and theoretical analyses indicate that the generalized Cayley-Dixon resultant formulation developed by Kapur, Saxena and Yang is very effective in practice for solving a large class of such parametric polynomial systems arising in practical applications. A particularly attractive feature of this formulation is its problem-adaptiveness: it implicitly exploits the sparse structure and non-genericity of a polynomial system.Kapur and Chtcherba have identified a geometric object, the support hull, characterizing the terms appearing in a polynomial system (which is related to the associated convex hull) as a powerful concept. Time and space complexity as well as whether the resultant is computed exactly or not using the Cayley-Dixon resultant formulation, are governed by the support hull. Further, the problem-adaptiveness feature of the Cayley-Dixon resultant formulation appears also to be due to the support hull and the nature of the nonzero coefficients of the terms in the support hull. This project will use the support hull as the key technical concept for developing new methods for computing resultants and investigating symbolic-numeric methods. Techniques will be developed to extract resultants efficiently for mixed non-generic polynomial systems (where polynomials have different subsets of terms) since problems arising from applications are mixed. Geometric methods that approximate the support hull of a polynomial system by well behaved support hulls for which the resultant can be computed easily, will be developed. Incremental construction of dialytic resultant matrices guided by support hulls will be explored. These approaches are expected to generate resultant matrices of much smaller size, leading to significant gains in computational performance and solutions of problems beyond the reach of existing methods.
应用领域的许多问题包括工程设计,机器人技术,逆运动学,图形,实体建模,CAD-CAM设计,几何结构,分子生物学,药物设计和控制理论,可以使用具有许多变量的参数多发型系统进行建模。 然而,解决多元多项式系统,尤其是象征性地是一个主要挑战。每当成功的情况下,符号方法都比数值方法具有相当大的优势,因为必须仅计算一次符号解决方案,而每次参数值都会更改时必须计算数值解决方案。实验和理论分析表明,由Kapur,Saxena和Yang开发的广义Cayley-Dixon制剂在实践中非常有效地解决了在实际应用中引起的大量此类参数多项式系统。该公式的一个特别吸引人的特征是它的适应性:它隐含地利用了多项式系统的稀疏结构和非生成性。卡普尔和奇特巴(Kapur)和chtcherba已经确定了几何对象,支持船体,表征了在多项式系统中出现的术语(与多项式系统相关的术语(这与相关的convex hull相关)。时间和空间的复杂性以及是否完全使用Cayley-Dixon结果配方计算结果,该配方受支持船体的控制。此外,Cayley-Dixon产生的配方的问题适应性特征似乎也归因于支撑船体的支持船体和术语中术语的非零系数的性质。 该项目将使用支持船体作为开发用于计算结果和调查符号数字方法的新方法的关键技术概念。由于混合使用的问题是混合使用的问题,因此将开发有效提取产生剂的技术来有效提取产生剂(多条件具有不同的术语子集)。通过表现良好的支撑船体近似多项式系统的支撑船体的几何方法,将很容易地计算出该船体。 将探索由支撑船体引导的透析产生矩阵的增量结构。预计这些方法将产生尺寸较小的结果矩阵,从而导致计算性能和解决现有方法范围之外的问题解决方案的显着提高。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Deepak Kapur其他文献
Comparative Analysis of Brain Drain, Brain Circulation and Brain Retain: A Case Study of Indian Institutes of Technology
人才流失、脑循环和人才保留的比较分析:以印度理工学院为例
- DOI:10.1080/13876988.2013.81037610.1080/13876988.2013.810376
- 发表时间:20132013
- 期刊:
- 影响因子:0
- 作者:R. Varma;Deepak KapurR. Varma;Deepak Kapur
- 通讯作者:Deepak KapurDeepak Kapur
REDUCING STEREOTYPE THREAT EFFECTS Creating a Critical Mass Eliminates the Effects of Stereotype Threat on Women ’ s Mathematical Performance Declaration of Competing
减少刻板印象威胁影响 创造临界质量消除刻板印象威胁对女性数学成绩的影响 竞赛宣言
- DOI:
- 发表时间:20162016
- 期刊:
- 影响因子:0
- 作者:Nidhi Singhal;Deepak KapurNidhi Singhal;Deepak Kapur
- 通讯作者:Deepak KapurDeepak Kapur
Determinants of Export Performance of Firms: Lessons from Indian Experience
企业出口绩效的决定因素:印度经验的教训
- DOI:10.1177/097189072007010710.1177/0971890720070107
- 发表时间:20072007
- 期刊:
- 影响因子:0
- 作者:Ravindra H. Dholakia;Deepak KapurRavindra H. Dholakia;Deepak Kapur
- 通讯作者:Deepak KapurDeepak Kapur
PHYSICIAN BEHAVIOUR TOWARDS MARKETING OF PHARMACEUTICAL PRODUCTS
医生对药品营销的行为
- DOI:
- 发表时间:20172017
- 期刊:
- 影响因子:0
- 作者:Ankush;Deepak KapurAnkush;Deepak Kapur
- 通讯作者:Deepak KapurDeepak Kapur
Theoretical Aspects of Computing – ICTAC 2017
计算的理论方面 – ICTAC 2017
- DOI:
- 发表时间:20172017
- 期刊:
- 影响因子:0
- 作者:D. Hung;Deepak KapurD. Hung;Deepak Kapur
- 通讯作者:Deepak KapurDeepak Kapur
共 14 条
- 1
- 2
- 3
Deepak Kapur的其他基金
AF: Small: Comprehensive Groebner, Parametric GCD Computations and Real Geometric Reasoning
AF:小:综合 Groebner、参数 GCD 计算和真实几何推理
- 批准号:19088041908804
- 财政年份:2019
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant
Generating Octagonal Invariants using Quantifier Elimination Heuristics
使用量词消除启发法生成八边形不变量
- 批准号:12480691248069
- 财政年份:2012
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant
Math: Algorithms for Parametric (Comprehensive) Groebner Computations
数学:参数(综合)Groebner 计算算法
- 批准号:12170541217054
- 财政年份:2012
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant
TC: Medium: Collaborative Research: Unification Laboratory: Increasing the Power of Cryptographic Protocol Analysis Tools
TC:媒介:协作研究:统一实验室:提高密码协议分析工具的能力
- 批准号:09052220905222
- 财政年份:2009
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: CT-M: Unification Laboratory for Cryptographic Protocol Analysis
合作研究:CT-M:密码协议分析统一实验室
- 批准号:08314620831462
- 财政年份:2008
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SAIL: An Integration of SAT Solver and Inductive Prover
合作研究:SAIL:SAT 求解器和归纳证明器的集成
- 批准号:05413150541315
- 财政年份:2006
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant
2003 Dagstuhl Seminar on Deduction
2003 Dagstuhl 演绎研讨会
- 批准号:03141350314135
- 财政年份:2003
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant
Polynomial Manipulation using Dixon Resultant Formulation
使用 Dixon 结果公式进行多项式运算
- 批准号:02030510203051
- 财政年份:2002
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Continuing GrantContinuing Grant
ITR: Integrating Induction Schemes into Decision Procedures
ITR:将归纳方案纳入决策程序
- 批准号:01136110113611
- 财政年份:2001
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research on Semantic Unification and its Applications
语义统一及其应用的协作研究
- 批准号:00981140098114
- 财政年份:2001
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
基于复系数准多项式的多智能体系统时滞和拓扑协同分析
- 批准号:62303238
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多项式模糊正系统输出反馈控制与放松的稳定性分析
- 批准号:62103351
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合隶属函数的时滞正多项式模糊系统稳定性分析与控制
- 批准号:62103356
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二维连续模糊多项式系统的分析综合及其在网络化控制系统中的应用
- 批准号:61903244
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于自适应基稀疏多项式混沌理论的规模化可再生能源承载能力动态概率评估方法研究
- 批准号:51907143
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:23314012331401
- 财政年份:2024
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:23314002331400
- 财政年份:2024
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant
Supersymmetry in the geometry of particle systems
粒子系统几何中的超对称性
- 批准号:23K1298323K12983
- 财政年份:2023
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
- 批准号:1064321210643212
- 财政年份:2023
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:
CNS Core: Small: Schedulability Analysis of Safety-Critical Real-Time Systems: Beyond Pseudo-polynomial Time Algorithms
CNS 核心:小型:安全关键实时系统的可调度性分析:超越伪多项式时间算法
- 批准号:21412562141256
- 财政年份:2022
- 资助金额:$ 21.2万$ 21.2万
- 项目类别:Standard GrantStandard Grant