Collaborative Research: NeTS-NBD: SCAN: Statistical Collaborative Analysis of Networks

协作研究:NeTS-NBD:SCAN:网络统计协作分析

基本信息

  • 批准号:
    0721591
  • 负责人:
  • 金额:
    $ 26.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-01-01 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

Communications networks increasingly rely on robust, accurate monitoring systems to help network operators detect disruptions, misconfigurations, and failures. Accurate monitoring techniques detect disruptions when they occur (with a negligible number of false alarms), and identify the source of the disruption, for example, the faulty network element, the source of unwanted traffic. Robust monitoring detects disruptions when measurements may be noisy, incomplete, or when attackers are actively trying to disguise their presence. Network monitoring is most accurate when distributed; that is, when it draws upon observations from a large number of vantage points. Monitoring is more robust when it is network-level; that is, when it can rely on properties of the network traffic, rather than on other features such as traffic content. The researchers are developing techniques for distributed, network-level monitoring and incorporating these techniques into a distributed data management system for detecting network disruptions in two areas: internal network faults and failures, and external threats and unwanted traffic.The research has three themes: (1) Online, distributed, detection algorithms; (2) Informed actuation that uses passive measurements as a baseline, judiciously choosing active measurements to issue in support of the passive measurements, (3) Incorporating these techniques into real-world systems to evaluate the practicality of the schemes and their applicability in realistic network monitoring settings. We will evaluate our algorithms in two settings: detection of internal network disruptions (e.g., failures, faults and misconfigurations within a single network, such as a campus or enterprise network); and fast detection of global threats (e.g. spam, botnets).
通信网络越来越依赖强大、准确的监控系统来帮助网络运营商检测中断、错误配置和故障。 准确的监控技术可以在中断发生时检测到中断(误报数量可以忽略不计),并识别中断的来源,例如故障网络元件、不需要的流量的来源。 当测量可能有噪音、不完整或攻击者积极试图掩盖其存在时,强大的监控可以检测到中断。 分布式网络监控最准确;也就是说,当它利用大量有利位置的观察结果时。网络级监控更加稳健;也就是说,它可以依赖网络流量的属性,而不是流量内容等其他特征。研究人员正在开发分布式网络级监控技术,并将这些技术整合到分布式数据管理系统中,以检测两个领域的网络中断:内部网络故障和故障,以及外部威胁和不需要的流量。该研究有三个主题:( 1)在线、分布式、检测算法; (2) 使用无源测量作为基线的知情驱动,明智地选择有源测量来发布以支持无源测量,(3) 将这些技术纳入现实世界的系统中,以评估方案的实用性及其在现实网络中的适用性监控设置。 我们将在两种情况下评估我们的算法:检测内部网络中断(例如单个网络(例如园区或企业网络)内的故障、错误和配置错误);以及快速检测全球威胁(例如垃圾邮件、僵尸网络)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Guestrin其他文献

Data association for topic intensity tracking
主题强度跟踪的数据关联
T ailor : Generating and Perturbing Text with Semantic Controls
Tailor:使用语义控制生成和扰动文本
  • DOI:
    10.48550/arxiv.2303.01580
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    22.7
  • 作者:
    L. Banarescu;C. Bonial;Madalina Shu Cai;Kira Georgescu;Ulf Gri ffi tt;Kevin Hermjakob;Philipp Knight;Martha Koehn;Palmer Nathan;Samuel R. Bowman;Gabor Angeli;Christopher Potts;Christopher Clark;Kenton Lee;Ming;Sumanth Dathathri;Andrea Madotto;Janice Lan;Eric Frank;Piero Molino;J. Yosinski;Matt Gardner;Yoav Artzi;Victoria Basmov;Ben Berant;Sihao Bogin;Pradeep Chen;Dasigi;Daniel Khashabi;Kevin Lin;Jiangming Liu;Nelson Liu;Phoebe Mulcaire;Qiang Ning;Sameer Singh;Noah A. Smith;Sanjay Subramanian;Reut Tsarfaty;Eric Wallace;Ally Zhang;Ben Zhou;Joel Grus;Mark Neumann;Oyvind Tafjord;Pradeep Dasigi;Nelson Liu;Matthew Pe;Michael Schmitz;Luke Zettlemoyer. 2018;William Merrill;Jesse Dodge;Jan Hajiˇc;Massimiliano Ciaramita;Richard Johans;Daisuke Kawahara;Maria Antònia Martí;Lluís Màrquez;Adam Meyers;Joakim Nivre;Sebastian Padó;Jan Štˇepánek;Pavel Straˇnák;M. Surdeanu;Kuan;Kai;Generat;N. Keskar;Bryan McCann;L. Varshney;Chuanrong Li;Shengshuo Lin;Zeyu Liu;Xinyi Wu;Xuhui Zhou;Shane Steinert;Yinhan Liu;Myle Ott;Naman Goyal;Jingfei Du;M;ar Joshi;ar;Danqi Chen;Omer Levy;Mike Lewis;Yiwei Lyu;P. Liang;Hai Pham;Eduard Hovy;Aman Madaan;Amrith Rajagopal Setlur;Tanmay Parekh;Hao Peng;Ankur P. Parikh;Manaal Faruqui;Bhuwan;Sameer Pradhan;Aless;ro Moschitti;ro;Nianwen Xue;Colin Ra ff el;Noam M. Shazeer;A. Roberts;K. Lee;Sharan Narang;Michael Matena;Yanqi;Wei Zhou;J. LiPeter;Liu. 2020;Exploring;Pranav Rajpurkar;Jian Zhang;Konstantin Lopyrev;Marco Tulio Ribeiro;Carlos Guestrin;Tongshuang Wu;Alexis Ross;Ana Marasovi´c
  • 通讯作者:
    Ana Marasovi´c
App Usage Predicts Cognitive Ability in Older Adults
应用程序使用情况可预测老年人的认知能力
Kernel Belief Propagation
核置信传播
Stochastic roadmap simulation for the study of ligand-protein interactions
用于研究配体-蛋白质相互作用的随机路线图模拟
  • DOI:
    10.1093/bioinformatics/18.suppl_2.s18
  • 发表时间:
    2002-10-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    M. Apaydin;Carlos Guestrin;C. Varma;D. Brutlag;J. Latombe
  • 通讯作者:
    J. Latombe

Carlos Guestrin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Guestrin', 18)}}的其他基金

RI: Small: GraphLab 2: An Abstraction and System for Large-Scale Parallel Machine Learning on Natural Graphs
RI:小型:GraphLab 2:自然图上大规模并行机器学习的抽象和系统
  • 批准号:
    1258741
  • 财政年份:
    2012
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
RI: Small: GraphLab 2: An Abstraction and System for Large-Scale Parallel Machine Learning on Natural Graphs
RI:小型:GraphLab 2:自然图上大规模并行机器学习的抽象和系统
  • 批准号:
    1218756
  • 财政年份:
    2012
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
NGNI-Medium: Collaborative Research: MUNDO: Managing Uncertainty in Networks with Declarative Overlays
NGNI-Medium:协作研究:MUNDO:使用声明性覆盖管理网络中的不确定性
  • 批准号:
    1318441
  • 财政年份:
    2012
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
NGNI-Medium: Collaborative Research: MUNDO: Managing Uncertainty in Networks with Declarative Overlays
NGNI-Medium:协作研究:MUNDO:使用声明性覆盖管理网络中的不确定性
  • 批准号:
    0803333
  • 财政年份:
    2008
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
CAREER: Thinking that is "just right": Query-Specific Probabilistic Reasoning and its Application to Large-Scale Sensor Networks
职业:认为“恰到好处”:特定于查询的概率推理及其在大规模传感器网络中的应用
  • 批准号:
    0644225
  • 财政年份:
    2006
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
NeTS-NOSS: SNI: A General and Robust Networking Architecture for Distributed Data Processing in Sensor Networks
NeTS-NOSS:SNI:传感器网络中分布式数据处理的通用且稳健的网络架构
  • 批准号:
    0625518
  • 财政年份:
    2006
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
CSR-EHS: Collaborative Research: A General, Efficient and Robust Platform for Enabling Control Applications in Sensor Networks
CSR-EHS:协作研究:用于在传感器网络中实现控制应用的通用、高效且稳健的平台
  • 批准号:
    0509383
  • 财政年份:
    2005
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant

相似国自然基金

靶向p47phox通过抑制NETs生成而减少深静脉血栓形成的分子机制研究
  • 批准号:
    82300153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PTBP3/CCDC25轴研究中性粒细胞胞外诱捕网(NETs)在胃癌腹膜转移中的作用及健脾散结法的治疗机制
  • 批准号:
    82305103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NETs通过m6A修饰lncRNA-H19调控内皮细胞铁死亡介导糖尿病足血管新生障碍的机制研究
  • 批准号:
    82370497
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
三叶青多糖调控补体-血小板-NETs稳态平衡干预免疫血栓过度形成防治重症肺炎的作用机制研究
  • 批准号:
    82374127
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343618
  • 财政年份:
    2024
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343619
  • 财政年份:
    2024
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
  • 批准号:
    2312138
  • 财政年份:
    2023
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312834
  • 财政年份:
    2023
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: NSF NeTS PI Meeting - Spring 2023
协作研究:会议:NSF NeTS PI 会议 - 2023 年春季
  • 批准号:
    2309858
  • 财政年份:
    2023
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了