Collaborative Research: Characterization of Random Fields and their Impact on the Mechanics of Geosystems at Multiple Scales
合作研究:随机场的表征及其对多尺度地球系统力学的影响
基本信息
- 批准号:0727121
- 负责人:
- 金额:$ 9.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, the multi-scale nature of soil behavior is explicitly accounted for by obtaining the mechanical response of geosystems using an accurate multi-scale hierarchical computational framework. It is well known that the behavior of particulate media, such as sands, is encoded at the granular-scale and hence methods for up-scaling such behavior across relevant scales of interest?from granular-scale (~1mm) to field-scale (1m)?are needed to attain a more accurate prediction of soil behavior. Multi-scale analysis is especially important under extreme conditions such as strain localization, penetration or liquefaction, where the classical constitutive description may no longer apply. Several unanswered questions illustrate the importance of studying such phenomena: What material parameterizations are most appropriate at various scales? What are the relevant scales needed for an accurate material description? What are the impacts of uncertainties and inhomogeneities on field-scale behavior? A probabilistic framework across multiple scales is needed to answer these questions and to consistently compute the behavior of the material across scales. In an unprecedented fashion, probabilistic models for soil porosity are developed at multiple scales, using experimental results from X-Ray computed tomography to study spatial correlation down to the millimeter scale. From a computational standpoint, the multi-scale framework is demonstrated using well-established models for sands. In this hierarchical approach, a more accurate material description?at finer scales?is pursued only in the presence of strong inhomogeneities, either material or imposed (e.g. by deformations). The hierarchical approach is based on passing the macroscopic deformation down to the finer scale(s) and then returning more accurate, averaged stresses. Monte Carlo simulation is used to generate material properties in a hierarchical manner, so that fine scale material data can be obtained whenever necessary, conditional upon previously simulated coarse scale data. These modeling approaches will be developed and then used in several parametric and validation studies to bring insight to practical problems where multi-scale effects are important. Multi-scale modeling opens the door to develop design-specific engineering systems with desirable qualities or properties, and will allow scientists and engineers to better understand the role of finer scales on the behavior of complex geotechnical systems.
在这项研究中,通过使用准确的多尺度分层计算框架获得地理系统的机械响应,可以明确解释土壤行为的多尺度性质。众所周知,颗粒培养基的行为(例如沙子)是在颗粒尺度上编码的,因此是在相关尺度上对这种行为提高这种行为的方法? 1M)?是否需要更准确地预测土壤行为。在极端条件下,例如应变定位,穿透或液化,多尺度分析尤为重要,而经典的本构描述可能不再适用。几个未解决的问题说明了研究这种现象的重要性:在各种尺度上,哪些物质参数化最合适?准确的材料描述需要什么相关尺度?不确定性和不均匀性对现场尺度行为的影响是什么?需要跨多个尺度的概率框架来回答这些问题并始终如一地计算跨量表的材料的行为。以前所未有的方式,使用X射线计算机断层扫描的实验结果,以多个尺度开发了土壤孔隙率的概率模型,从而研究空间相关性至毫米量表。从计算的角度来看,使用良好的沙子模型证明了多尺度框架。在这种层次结构方法中,更准确的材料描述?在更细的尺度上?仅在材料或施加的强烈不均匀性的情况下才能追求(例如,变形)。分层方法基于将宏观变形传递到更细的尺度,然后返回更准确的平均应力。 Monte Carlo模拟用于以层次的方式生成材料属性,因此在必要时可以根据先前模拟的粗尺度数据来获得精细的规模材料数据。这些建模方法将被开发,然后在几个参数和验证研究中使用,以对多尺度效果很重要的实际问题进行洞察力。多尺度建模为开发具有理想质量或特性的特定设计工程系统打开了大门,并将允许科学家和工程师更好地理解更精细的尺度对复杂岩土技术系统的行为的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack Baker其他文献
Random Effect Models For Repairable System Reliability
可修复系统可靠性的随机效应模型
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Jack Baker - 通讯作者:
Jack Baker
Keeping Promises? Democracies’ Ability to Harmonize Their International and National Climate Commitments
民主国家有能力兑现其国际和国家气候承诺吗?
- DOI:
10.1162/glep_a_00709 - 发表时间:
2023 - 期刊:
- 影响因子:4.8
- 作者:
Jack Baker - 通讯作者:
Jack Baker
Language, sexuality and corpus linguistics
语言、性和语料库语言学
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.1
- 作者:
Jack Baker - 通讯作者:
Jack Baker
sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
sgmcmc:随机梯度马尔可夫链蒙特卡罗的 R 包
- DOI:
10.18637/jss.v091.i03 - 发表时间:
2017 - 期刊:
- 影响因子:5.8
- 作者:
Jack Baker;P. Fearnhead;E. Fox;C. Nemeth - 通讯作者:
C. Nemeth
Jack Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack Baker', 18)}}的其他基金
Assessing Urban Post-Earthquake Community Recovery to Inform Pre-Disaster Planning
评估城市震后社区恢复情况,为灾前规划提供信息
- 批准号:
2053014 - 财政年份:2021
- 资助金额:
$ 9.24万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Data for Socio-Physical Extreme Event Resilience (Data-SPEER)
规划拨款:社会物理极端事件恢复力数据工程研究中心(Data-SPEER)
- 批准号:
1840435 - 财政年份:2018
- 资助金额:
$ 9.24万 - 项目类别:
Standard Grant
CAREER: Assessment of Infrastructure Risk Under Natural Disasters in a Multiscale Probabilistic Framework
职业:在多尺度概率框架中评估自然灾害下的基础设施风险
- 批准号:
0952402 - 财政年份:2010
- 资助金额:
$ 9.24万 - 项目类别:
Standard Grant
A Comprehensive Approach for Incorporating the Effects of Near-Fault Directivity into Design Criteria
将近故障方向性影响纳入设计标准的综合方法
- 批准号:
0726684 - 财政年份:2008
- 资助金额:
$ 9.24万 - 项目类别:
Standard Grant
NSF East Asia Summer Institutes for US Graduate Students
美国研究生 NSF 东亚暑期学院
- 批准号:
0405003 - 财政年份:2004
- 资助金额:
$ 9.24万 - 项目类别:
Fellowship
相似国自然基金
基于“经验-成分-智能感官-毒效表征”的蒙药诃子汤炮制草乌“稍有麻舌感”质量评价体系研究
- 批准号:82360848
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
- 批准号:32371262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
深度神经网络的超图表征学习、训练优化与鲁棒性研究
- 批准号:62376153
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于三维流体微环境控制与原位表征的人工微血管组织构建方法研究
- 批准号:62373235
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于深度解耦表征学习的流程工业质量预报与可解释性研究
- 批准号:62303146
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
- 批准号:
2334028 - 财政年份:2024
- 资助金额:
$ 9.24万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
- 批准号:
2334027 - 财政年份:2024
- 资助金额:
$ 9.24万 - 项目类别:
Standard Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
$ 9.24万 - 项目类别:
Standard Grant
Collaborative Research: Improved Geochronology-Based Sediment Provenance Analysis Through Physico-Mechanical Characterization of Zircon Transport
合作研究:通过锆石运移的物理机械表征改进基于地质年代学的沉积物物源分析
- 批准号:
2314016 - 财政年份:2023
- 资助金额:
$ 9.24万 - 项目类别:
Standard Grant
Collaborative Research: Developing optimally customized-mode-selective photonic lanterns to enable the characterization of hundreds of exoplanets on solar system.
合作研究:开发最佳定制模式选择光子灯笼,以表征太阳系上数百颗系外行星。
- 批准号:
2308361 - 财政年份:2023
- 资助金额:
$ 9.24万 - 项目类别:
Standard Grant