Photonically Strongly Coupled Organic/Inorganic Nanocomposites for Light Emitter and Photovoltaic Applications

用于发光体和光伏应用的光子强耦合有机/无机纳米复合材料

基本信息

  • 批准号:
    0725740
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

"Photonically Strongly Coupled Organic/Inorganic Nanocomposites for LightEmitter and Photovoltaic Applications" (ECCS-0725740)In this research, fundamental photonic phenomena are combined with new types of organic/inorganic intercalated media on the nanoscale, with the aim to derive exceptionally strong light-matter interaction for applications ranging from compact light emitters to novel photovoltaics. The intellectual merit of the work lies in creating organic-inorganic hybrid photonic materials whose electronic excitations couple beyond the perturbative regime for enhanced light- matter interaction, which exceeds that in present optical devices. This is accomplished by special combination of resonantly interacting materials, exploiting two classes of material which each possess significant optical oscillator strengths, but in a highly contrasting electronic environment. The organic subcomponent of the hybrid nanoscale media is formed from J-aggregate polymers which exhibit exceptional absorption and emission concentrated in narrow spectral ranges across the visible and near infrared. Spectrally matching the organic components are inorganic colloidal II-VI semiconductor quantum dots, which provide pathways via excitation and charge transfer to the organic and external electrical interfaces, respectively. The key physical feature of the intercalated hybrid medium is resonant electromagnetic excitation transfer, which can have near 100% efficiency as an electronic energy transfer channel within the two subsystems, at room temperature.The broader impact of the proposed work is the potential to insert exceptionally high performance entirely new active photonic material into functional optoelectronic devices, such as light emitters and photovoltaics, spread hyperspectrally across the visible into the near IR portions of the spectrum. The device goals aim to search for novel application spaces presently not accessible or enabled by conventional approaches to these technologies by inorganic and organic semiconductors, respectively, including visual arts. Scientifically, bridging the two rather separate branches of active optical technologies, based on inorganic and organic materials/devices, offers a new prism to view opportunities for synergy and vision to emerging photonics technologies, as well as training of interdisciplinary new generation of technologists. The subject matter of innovative, and structurally flexible and spatially extendable photonic materials offers also an excellent vehicle for outreach and connection to science, including lab experience for undergraduates and teaching aids for GK-12, the latter exploiting Brown University's excellent outreach infrastructure.
在这项研究中,“用于光发射机和光伏应用的光子耦合有机/无机纳米复合材料”(ECCS-0725740)(ECCS-0725740),基本的光子现象与新型有机/无机相互介绍的新型媒体与纳尼斯卡群岛的目标相结合,以衍生为目标。从紧凑的光发射器到新型光伏的应用的物质相互作用。这项工作的智力优点在于创建有机无机杂交光子材料,其电子激发夫妇以外的扰动式相互作用,以增强光质相互作用,这超出了当前的光学设备。这是通过共同相互作用的材料的特殊组合来实现的,利用了两类材料,它们具有重要的光学振荡器强度,但在高度对比的电子环境中。杂化纳米级培养基的有机子分量是由J聚合物组成的,它们表现出异常的吸收,发射集中在狭窄的光谱范围内,范围横跨可见光和接近红外线。频谱与有机成分相匹配的是无机胶体II-VI半导体量子点,它们分别通过激发和电荷传递到有机和外部电气接口提供途径。插入式杂化介质的关键物理特征是共振电磁激发转移,在两个子系统内,作为电子能量传递通道的效率接近100%,在室温下。拟议工作的更广泛的影响是插入异常的潜力高性能全新的活性光子材料进入功能性光电设备,例如光发射器和光伏设备,在可见的光谱中传播到频谱的接近IR部分。该设备目标旨在搜索目前无法通过无机和有机半导体(包括视觉艺术)对这些技术的常规方法访问或启用的新型应用空间。从科学上讲,基于无机和有机材料/设备的两个相当单独的主动光学技术分支提供了新的棱镜,以查看具有协同作用和愿景的机会,以培训新兴的新一代技术人员。创新的主题以及结构灵活的和空间扩展的光子材料也为宣传和与科学的联系提供了出色的工具,包括针对本科生的实验室经验和GK-12的教学辅助工具,后者利用了布朗大学出色的外展基础架构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arto Nurmikko其他文献

Arto Nurmikko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arto Nurmikko', 18)}}的其他基金

Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
  • 批准号:
    2322600
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Bidirectional Wireless Optoelectronic Device for Interfacing Brain Circuits
用于连接大脑电路的双向无线光电装置
  • 批准号:
    1402803
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
An Optoelectronics Device to Write-In and Read-Out Activity in Brain Circuits
用于写入和读出脑电路活动的光电装置
  • 批准号:
    1264816
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Red-Green-Blue Colloidal Quantum Dots for Full Spectrum Microlasers
用于全光谱微型激光器的红-绿-蓝胶体量子点
  • 批准号:
    1128331
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
EFRI-BSBA Integration of Dynamic Sensing and Actuating of Neural Microcircuits
EFRI-BSBA 动态传感与神经微电路驱动的集成
  • 批准号:
    0937848
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Biophotonics: Dynamical Cellular Imaging by Compact Arrays of Blue and Ultraviolet Light Emitting Diodes
生物光子学:通过蓝色和紫外发光二极管紧凑阵列进行动态细胞成像
  • 批准号:
    0423566
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Dynamics of Ultrafast Magnetization in Magnetic Thin Films and Heterostructures
磁性薄膜和异质结构中超快磁化的动力学
  • 批准号:
    0074080
  • 财政年份:
    2000
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Vertical Cavity Blue and Ultraviolet Light Emitters
垂直腔蓝光和紫外光发射器
  • 批准号:
    0070887
  • 财政年份:
    2000
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Acquisition of an Ultrafast Laser Spectrometer/Metrology System
购置超快激光光谱仪/计量系统
  • 批准号:
    9871213
  • 财政年份:
    1998
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Research on Blue and Near Ultraviolet Diode Lasers
蓝光及近紫外二极管激光器的研究
  • 批准号:
    9726938
  • 财政年份:
    1998
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

探究SnRK2在渗透胁迫诱导的B-RAF激酶快速强烈激活过程中的作用
  • 批准号:
    32300261
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
台风过程引发陆架海有机质强烈降解作用的机理研究
  • 批准号:
    42276047
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
强烈开采下岩溶水动力条件变化对水岩作用的驱动模式研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强烈水动力扰动下潜流带硝酸盐还原的时空演变规律与控制机理
  • 批准号:
    42107099
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强烈水动力扰动下潜流带硝酸盐还原的时空演变规律与控制机理
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ultrafast Dephasing of Strongly Coupled Plasmon-Exciton States
强耦合等离子体激子态的超快相移
  • 批准号:
    2304905
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Multi-qubit gates mediated by several strongly coupled motional modes
由几种强耦合运动模式介导的多量子位门
  • 批准号:
    2889918
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
New Method of Strongly-coupled QFTs towards Quantum Gravity, Nuclear, and Astrophysics
强耦合 QFT 应用于量子引力、核和天体物理学的新方法
  • 批准号:
    22KJ1777
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Control of the electron-lattice strongly-coupled system by ultrahigh magnetic fields
超高磁场对电子晶格强耦合系统的控制
  • 批准号:
    23H01117
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Electrically driven plasmonic light emitters strongly coupled to excitons and dielectric resonators
与激子和介电谐振器强耦合的电驱动等离子体发光体
  • 批准号:
    2309941
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了