Computational Methods for Astrophysical Flows

天体物理流的计算方法

基本信息

  • 批准号:
    0711885
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-15 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

Astrophysical fluid dynamics is a branch of physics concerned with understanding the evolution of far-away objects such as black holes and neutron stars. In order to fully understand such objects, mathematical models must incorporate general relativistic, electromagnetic, and fluid dynamic effects. The resulting equations are a large, coupled, nonlinear system of partial differential equations, some of which are evolution equations, while others are constraint equations that result from various gauge freedoms. The PI's research will focus on developing high-order schemes on unstructured grids to solve various simplified versions of the full astrophysical fluid dynamic model. For example, one problem of great interest to astrophysicists is that of mass accretion onto black holes and the resulting formation of relativistic jets; this phenomenon can be treated in the test-fluid limit (i.e., background spacetime metric is fixed). Another important problem is the generation of gravitational waves (i.e., ripples in spacetime) from the collision of two massive black holes; this problem can be first looked at in the minimally coupled scalar field limit. The PI will make use of both discontinuous Galerkin and residual distribution scheme methodologies to construct accurate and efficient schemes. In particular, these methods will be combined with adaptive mesh refinement strategies. In order to do this efficiently, the PI will construct a posteriori error estimators that can be used to dynamically diagnose where large numerical errors are being made. The resulting set of numerical methods will be incorporated into a computer code that will be made freely available on the web.Although astrophysical objects such as black hole accretion disks, extragalactic jets, and supernovae are observable using various telescopes, direct experimentation is clearly not possible. On the other hand, mathematical models that attempt to explain the physics of these objects are necessarily complex and must include gravitational, electromagnetic, and fluid dynamic effects. Exact solutions to the resulting mathematical equations can only be constructed in very special cases. Therefore, the ability to understand astrophysical phenomena from a scientific viewpoint rests largely on the ability to run accurate and efficient computer simulations, which, in turn, rests on the quality of the computational methods that are used to carry out those simulations. The PI's research is focused on developing classes of high-order computational methods for solving the equations of astrophysical fluid dynamics. One aspect of this work will involve the construction of various error indicators that can be used to dynamically diagnose and correct the accuracy of a computation. Another aspect will be to develop a software package that will be made freely available on the web. The computational methods that result from this development will be applied to two distinct problems in astrophysics: (1) the formation of astrophysical jets from black hole accretion processes and (2) the dynamics of the interaction of two black holes and the resulting generation of gravitational waves.
天体物理流体动力学是物理学的一个分支,涉及理解黑洞和中子星等遥远物体的演化。为了充分理解这些物体,数学模型必须结合广义相对论、电磁和流体动力学效应。所得方程是一个大型、耦合、非线性的偏微分方程组,其中一些是演化方程,而另一些是由各种规范自由度产生的约束方程。 PI 的研究将集中于开发非结构化网格的高阶方案,以解决完整天体物理流体动力学模型的各种简化版本。例如,天体物理学家非常感兴趣的一个问题是黑洞的质量吸积以及由此形成的相对论性喷流。这种现象可以在测试流体限制下处理(即背景时空度量是固定的)。另一个重要问题是两个大质量黑洞碰撞时产生引力波(即时空波纹)。这个问题可以首先在最小耦合标量场极限中考察。 PI 将利用不连续伽辽金和残差分布方案方法来构建准确且高效的方案。特别是,这些方法将与自适应网格细化策略相结合。 为了有效地做到这一点,PI 将构建一个后验误差估计器,可用于动态诊断出现较大数值误差的位置。由此产生的一组数值方法将被纳入计算机代码中,并在网络上免费提供。尽管可以使用各种望远镜观测黑洞吸积盘、河外喷流和超新星等天体物理物体,但直接进行实验显然是不可能的。另一方面,试图解释这些物体物理现象的数学模型必然很复杂,并且必须包括重力、电磁和流体动力学效应。只有在非常特殊的情况下才能构建所得数学方程的精确解。因此,从科学角度理解天体物理现象的能力在很大程度上取决于运行准确和高效的计算机模拟的能力,而计算机模拟的能力反过来又取决于用于执行这些模拟的计算方法的质量。 PI 的研究重点是开发用于求解天体物理流体动力学方程的高阶计算方法。这项工作的一方面将涉及构建各种误差指示器,可用于动态诊断和纠正计算的准确性。另一个方面是开发一个在网络上免费提供的软件包。这一发展产生的计算方法将应用于天体物理学中的两个不同问题:(1)黑洞吸积过程中天体物理喷流的形成;(2)两个黑洞相互作用的动力学以及由此产生的引力波浪。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rossmanith其他文献

James Rossmanith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rossmanith', 18)}}的其他基金

Entropy-Consistent Moment-Closure Approximations of Kinetic Boltzmann Equations
动力学玻尔兹曼方程的熵一致矩闭合近似
  • 批准号:
    2012699
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Micro-Macro Decomposition Numerical Schemes for Multiscale Simulation of Plasma
等离子体多尺度模拟的微观-宏观分解数值方案
  • 批准号:
    1620128
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Discontinuous Galerkin Schemes for Fluid, Kinetic, and Multiscale Fluid/Kinetic Models in Plasma Physics Applications
等离子体物理应用中流体、动力学和多尺度流体/动力学模型的不连续伽辽金方案
  • 批准号:
    1419020
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Space-time DG-FEMs for Fluid and Kinetic Plasma Models
用于流体和动力学等离子体模型的时空 DG-FEM
  • 批准号:
    1016202
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Wave Propagation Methods for Astrophysical Flows
天体物理流的波传播方法
  • 批准号:
    0619037
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Wave Propagation Methods for Astrophysical Flows
天体物理流的波传播方法
  • 批准号:
    0409972
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

协同极化信息的时序InSAR地质灾害监测优化方法研究
  • 批准号:
    42307255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
冻融环境下GFRP锚杆锚固界面粘结劣化机理及其设计方法研究
  • 批准号:
    52308165
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于瞬态成像响应的非同步相移轮廓术三维测量方法研究
  • 批准号:
    62375078
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
构件复杂背景下的实景三维古建筑物细节多层次语义提取方法研究
  • 批准号:
    62306107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多源微振动抑制的智能柔顺多稳态耗能机理与方法研究
  • 批准号:
    52305103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme-scale Ready High-order Methods for Astrophysical and Laboratory Turbulence
合作研究:天体物理和实验室湍流的极端规模就绪高阶方法
  • 批准号:
    2204668
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme-scale Ready High-order Methods for Astrophysical and Laboratory Turbulence
合作研究:天体物理和实验室湍流的极端规模就绪高阶方法
  • 批准号:
    1907898
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme-scale Ready High-order Methods for Astrophysical and Laboratory Turbulence
合作研究:天体物理和实验室湍流的极端规模就绪高阶方法
  • 批准号:
    1908551
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了