Understanding and Exploiting the Transport Behavior of Polymers in Confined Geometries

了解和利用聚合物在受限几何形状中的传输行为

基本信息

  • 批准号:
    0700760
  • 负责人:
  • 金额:
    $ 29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-15 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Currently there are significant knowledge gaps in fundamentally understanding the thermodynamic and transport properties of polymers in confined geometries (e.g. ultra-thin films), and the dependence of these properties on film thickness and preparation conditions. Recent studies have shown that a wide variety of polymer film properties deviate from bulk behavior as the film thickness decreases below some critical thickness. Our recent measurements suggest that bulk diffusion of penetrants through polymer ultra-thin films decreases dramatically with decreasing film thickness while the proton conductivity of polymer films does not appear to decrease in a similar manner. The overarching goals of this work are to characterize the proton transport and diffusion behavior of polymers in confined geometries, elucidate the length scales and magnitudes of such behavior, and develop a self consistent and comprehensive fundamental understanding of the mechanisms that are responsible for the observed phenomena. The intellectual merits of the proposal can broadly be defined as: (1) characterizing the proton transport in polymer ultra-thin films, (2) developing a fundamental model to explain the physiochemical properties of polymer ultra-thin films, and (3) exploiting the observed behavior to produce enhanced capabilities for proton exchange membranes for fuel cells using existing materials and processes. The broader impacts of this activity include: (1) providing guidance on and opportunities for overcoming some of the roadblocks in microlithography to benefit the microelectronics industry, (2) providing a way to enhance polymer membrane performance for fuel cells, (3) educating undergraduate and graduate students in a manner that synergistically blends modeling and experiment, and (4) enhancing underrepresented and minority student education and improving secondary school science education.
目前,在从根本上理解受限几何形状(例如超薄膜)中聚合物的热力学和传输特性以及这些特性对薄膜厚度和制备条件的依赖性方面存在重大知识差距。 最近的研究表明,当薄膜厚度降低到某个临界厚度以下时,多种聚合物薄膜的性能就会偏离本体行为。 我们最近的测量表明,渗透剂通过聚合物超薄膜的整体扩散随着膜厚度的减小而急剧减少,而聚合物膜的质子电导率似乎并未以类似的方式降低。 这项工作的总体目标是表征聚合物在受限几何形状中的质子传输和扩散行为,阐明这种行为的长度尺度和幅度,并对导致观察到的现象的机制形成自洽和全面的基本理解。 该提案的智力优点可以概括地定义为:(1)表征聚合物超薄膜中的质子传输,(2)开发一个基本模型来解释聚合物超薄膜的物理化学性质,以及(3)利用观察到的行为使用现有材料和工艺增强燃料电池质子交换膜的能力。 这项活动的更广泛影响包括:(1) 为克服微光刻技术中的一些障碍提供指导和机会,以使微电子行业受益,(2) 提供一种增强燃料电池聚合物膜性能的方法,(3) 教育本科生和研究生以建模和实验协同融合的方式进行;(4) 加强代表性不足和少数民族学生的教育,改善中学科学教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clifford Henderson其他文献

Clifford Henderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clifford Henderson', 18)}}的其他基金

Conference: 63rd International Conference on Electron, Ion, and Photon Beam Technologies and Nanofabrication (EIPBN); Minneapolis, Minnesota; May 28-31, 2019
会议:第63届电子、离子和光子束技术与纳米加工国际会议(EIPBN);
  • 批准号:
    1935293
  • 财政年份:
    2019
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
  • 批准号:
    1938893
  • 财政年份:
    2018
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
EAGER: Templated Manufacturing of Graphene
EAGER:石墨烯的模板化制造
  • 批准号:
    1251639
  • 财政年份:
    2012
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Characterization and Understanding of the Anomolous Diffusion Behavior in Polymer Ultra-thin Films
聚合物超薄膜中反常扩散行为的表征和理解
  • 批准号:
    0652032
  • 财政年份:
    2007
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
GOALI: Rational Design of Advanced Photoresist Materials for 193 nm and 157 nm Lithography
目标:193 nm 和 157 nm 光刻先进光刻胶材料的合理设计
  • 批准号:
    0300467
  • 财政年份:
    2003
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
CAREER: Materials and Processes for Microlithography, Patterning and Surface Modification (Nanoscale)
职业:微光刻、图案化和表面改性(纳米级)的材料和工艺
  • 批准号:
    9985196
  • 财政年份:
    2000
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant

相似海外基金

Exploiting the Metabolic Dependencies of Pediatric AML
利用儿科 AML 的代谢依赖性
  • 批准号:
    10664637
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
Near Surface Geothermal Heat Battery : Sustainable Use of GeothermalHeat exploiting Legacy Mine workings to Transport Recycle Waste SurfaceHeat
近地表地热热电池:可持续利用地热,利用旧矿井运输回收废地表热
  • 批准号:
    2788797
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
    Studentship
Exploiting Quantum Computing for Large-Scale Transport Models
利用量子计算进行大规模运输模型
  • 批准号:
    10030783
  • 财政年份:
    2022
  • 资助金额:
    $ 29万
  • 项目类别:
    Collaborative R&D
CAREER: Probing and Exploiting Short-range Order in Crystalline Materials for Fast Ion Transport
职业:探索和利用晶体材料中的短程有序以实现快速离子传输
  • 批准号:
    2145832
  • 财政年份:
    2022
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
Exploiting Cancer Metabolism and Drug Efflux with Bystander-Assisted Immunotherapy
通过旁观者辅助免疫疗法利用癌症代谢和药物流出
  • 批准号:
    10688097
  • 财政年份:
    2022
  • 资助金额:
    $ 29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了