FRG: Collaborative Research: Dynamics of elastic biostructures in complex fluids
FRG:合作研究:复杂流体中弹性生物结构的动力学
基本信息
- 批准号:0652775
- 负责人:
- 金额:$ 50.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Problems in biological fluid dynamics typically involve the interaction of an elastic structure with a surrounding fluid. Mucus transport by cilia in the respiratory tract, sperm penetration of the oocyte in fertilization, and peristaltic contractions of the oviduct are examples of such interactions. Many biological fluids are actually complex; that is they are not liquids or mixtures of a simple molecular structure that yields Newtonian responses, but instead have complicated non-Newtonian mechanical responses that arise, usually, because they have suspended microstructure. While much progress has been made in the development of mathematical models and numerical methods for fluid-structure interactions in a Newtonian fluid, much work needs to be done in the case of complex fluids. This focused research group will use a combination of analytical, computational and experimental tools to investigate the dynamics of elastic structures coupled to a complex fluid. Accurate and robust numerical methods for viscoelastic fluids coupled to moving and flexible boundaries will be developed that build upon classical immersed boundary methods and particle methods previously designed for Newtonian fluids. Continuum descriptions of the viscoelastic fluid will be implemented, as well as models that track discrete viscoelastic microstructure of the fluid. While the methods developed will be widely applicable, the team will focus upon the biofluidmechanics of reproduction, nematode motility in microfluidic chambers, as well as mucus-ciliary transport. Computational models will be coordinated with physical and biological experiments performed at the Applied Mathematics Lab at the Courant Institute.Mathematics has had a huge impact on engineering and the physical sciences through its development of theoretical analyses and numerical methods for Newtonian fluid flows. The dynamics of complex fluids is emerging as another such opportunity, and is one which draws some of its richest problems from new areas in biophysics and engineering, medicine and reproductive health, and from core biology. The integration of mathematical and computational analysis into biological science presents educational challenges and great opportunities. This research project embraces these challenges, and is based upon collaborations of investigators at four institutions - Tulane University, New York University, Washington State University and the University of California, Los Angeles. A central component of this project is the training of graduate students and postdoctoral researchers. This FRG project will sponsor two summer programs, where the postdoctoral researchers and graduate students will spend six weeks at the Applied Mathematics Lab at Courant Institute. This will provide opportunities for all the students and postdocs involved in the project to work together side by side, develop a comprehensive understanding of the various aspects of the research, and experience and participate in the life of a working fluids lab.
生物流体动力学问题通常涉及弹性结构与周围流体的相互作用。呼吸道中纤毛的粘液运输、受精时精子穿透卵母细胞以及输卵管的蠕动收缩都是这种相互作用的例子。许多生物体液实际上很复杂;也就是说,它们不是产生牛顿响应的简单分子结构的液体或混合物,而是具有复杂的非牛顿机械响应,通常是因为它们具有悬浮的微观结构。 虽然牛顿流体中流固相互作用的数学模型和数值方法的发展已经取得了很大进展,但在复杂流体的情况下还需要做很多工作。这个重点研究小组将结合分析、计算和实验工具来研究与复杂流体耦合的弹性结构的动力学。将开发与移动和灵活边界耦合的粘弹性流体的精确且稳健的数值方法,该方法建立在先前为牛顿流体设计的经典浸入边界方法和粒子方法的基础上。将实现粘弹性流体的连续描述,以及跟踪流体的离散粘弹性微观结构的模型。虽然开发的方法将广泛适用,但该团队将重点研究繁殖的生物流体力学、微流体室中的线虫运动以及粘液纤毛运输。计算模型将与库朗研究所应用数学实验室进行的物理和生物实验相协调。数学通过发展牛顿流体流动的理论分析和数值方法,对工程和物理科学产生了巨大影响。 复杂流体的动力学正在成为另一个这样的机会,它从生物物理学和工程、医学和生殖健康以及核心生物学的新领域中汲取了一些最丰富的问题。数学和计算分析与生物科学的整合提出了教育挑战和巨大的机遇。该研究项目应对这些挑战,并基于杜兰大学、纽约大学、华盛顿州立大学和加州大学洛杉矶分校这四所机构的研究人员的合作。 该项目的核心组成部分是研究生和博士后研究人员的培训。 该 FRG 项目将赞助两个暑期项目,博士后研究人员和研究生将在库朗研究所的应用数学实验室度过六周的时间。这将为参与该项目的所有学生和博士后提供并肩工作的机会,全面了解研究的各个方面,并体验和参与工作流体实验室的生活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Shelley其他文献
Instant Neural Radiance Fields
即时神经辐射场
- DOI:
10.1145/3532833.3538678 - 发表时间:
2022-07-27 - 期刊:
- 影响因子:0
- 作者:
T. Müller;Alex Evans;Christoph Schied;Marco Foco;A. Bódis;Isaac Deutsch;Michael Shelley;A. Keller - 通讯作者:
A. Keller
Interpretable neural architecture search and transfer learning for understanding CRISPR-Cas9 off-target enzymatic reactions
用于理解 CRISPR-Cas9 脱靶酶反应的可解释神经架构搜索和迁移学习
- DOI:
10.1038/s43588-023-00569-1 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:0
- 作者:
Zijun Zhang;Adam R. Lamson;Michael Shelley;Olga G. Troyanskaya - 通讯作者:
Olga G. Troyanskaya
Interpretable neural architecture search and transfer learning for understanding sequence dependent enzymatic reactions
可解释的神经架构搜索和迁移学习,用于理解序列依赖性酶反应
- DOI:
10.48550/arxiv.2305.11917 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Zijun Zhang;Adam R. Lamson;Michael Shelley;O. Troyanskaya - 通讯作者:
O. Troyanskaya
Reversing Neuromuscular Blockade without Nerve Stimulator Guidance in a Postsurgical ICU—An Observational Study
在术后 ICU 中无需神经刺激器指导即可逆转神经肌肉阻滞——一项观察性研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Andrea Calef;Rashel Castelgrande;Kristin Crawley;Sara Dorris;Joanna Durham;Kai;Jen Paras;Kristen M. Piazza;Abigail Race;Laura Rider;Michael Shelley;Emily Stewart;Miranda Tamok;Jennifer Tate;J. Dodd - 通讯作者:
J. Dodd
Periodic sedimentation in a Stokesian fluid.
斯托克斯流体中的周期性沉积。
- DOI:
10.1103/physreve.74.035302 - 发表时间:
2006-09-08 - 期刊:
- 影响因子:0
- 作者:
Sunghwan Jung;S. Spagnolie;K. Parikh;Michael Shelley;A. Tornberg - 通讯作者:
A. Tornberg
Michael Shelley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Shelley', 18)}}的其他基金
Collaborative research: MODULUS: Nuclear envelope shape change coordination with chromosome segregation in mitosis in fission yeast
合作研究:MODULUS:核膜形状变化与裂殖酵母有丝分裂中染色体分离的协调
- 批准号:
2133261 - 财政年份:2022
- 资助金额:
$ 50.33万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale engineering of active stress in biomaterials
合作研究:生物材料主动应力的多尺度工程
- 批准号:
2004469 - 财政年份:2020
- 资助金额:
$ 50.33万 - 项目类别:
Continuing Grant
Collaborative Research: Fracture in Soft Organic Solids -The Variational View
合作研究:软有机固体的断裂 - 变分视图
- 批准号:
1615839 - 财政年份:2016
- 资助金额:
$ 50.33万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Study of Active Cellular Matter: Simulation, Modeling, and Analysis
合作研究:活性细胞物质的多尺度研究:模拟、建模和分析
- 批准号:
1620331 - 财政年份:2016
- 资助金额:
$ 50.33万 - 项目类别:
Standard Grant
Collaborative Research: Fracture in Soft Organic Solids -The Variational View
合作研究:软有机固体的断裂 - 变分视图
- 批准号:
1615839 - 财政年份:2016
- 资助金额:
$ 50.33万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Understanding and Controlling Active Fluids through Modeling, Simulation, and Experiment
合作研究:FRG:通过建模、模拟和实验理解和控制活性流体
- 批准号:
1463962 - 财政年份:2015
- 资助金额:
$ 50.33万 - 项目类别:
Continuing Grant
Collaborative Research: The Analysis and Simulation of Biologically Active Suspensions
合作研究:生物活性悬浮液的分析与模拟
- 批准号:
0920930 - 财政年份:2009
- 资助金额:
$ 50.33万 - 项目类别:
Standard Grant
Collaborative Research: MSPA-ENG: Interplay of Biosensing and Locomotion in Confined Microfluidic Environments
合作研究:MSPA-ENG:受限微流体环境中生物传感和运动的相互作用
- 批准号:
0700669 - 财政年份:2007
- 资助金额:
$ 50.33万 - 项目类别:
Continuing Grant
SGER: Proposal forModeling the Dynamics of Shape Change in Liquid Crystal Elastomer Systems
SGER:液晶弹性体系统形状变化动力学建模提案
- 批准号:
0440299 - 财政年份:2004
- 资助金额:
$ 50.33万 - 项目类别:
Standard Grant
Dynamics of Fiber Suspensions and their Applications
纤维悬浮液动力学及其应用
- 批准号:
0412203 - 财政年份:2004
- 资助金额:
$ 50.33万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 50.33万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 50.33万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 50.33万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 50.33万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245228 - 财政年份:2023
- 资助金额:
$ 50.33万 - 项目类别:
Standard Grant