Characterization and Understanding of the Anomolous Diffusion Behavior in Polymer Ultra-thin Films

聚合物超薄膜中反常扩散行为的表征和理解

基本信息

  • 批准号:
    0652032
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

Cliff Henderson / Georgia Inst. TechnologyThe overarching goals of this work are to further characterize the diffusion behavior of polymer ultra-thin films and polymers in confined geometries, elucidate the length scales and magnitudes of such behavior, and to develop a self consistent and comprehensive fundamental understanding of the mechanisms that are responsible for the observed phenomena. Preliminary results by the PIs from both experiment and molecular simulation suggest a novel model based on changes in both polymer chain mobility and free volume distribution that can explain all of the observed glass transition, coefficient of thermal expansion, diffusion, and proton conductivity results in a consistent manner. Combined, these two concerted mechanisms can lead to the rich diversity of polymer thin film behavior observed thus far. A unique team has been assembled to integrate experimental characterization with molecular simulation in order to elucidate the origin of these thin film phenomena. Professor Clifford Henderson directs the experimental studies and has extensive experience in polymer characterization and polymer thin films. Professor Peter Ludovice has extensive expertise in molecular simulation and l supervises the modeling work. The intellectual merits of the proposal can broadly be defined as: (1) characterizing the diffusion behavior of ultra-thin polymer films and (2) developing a fundamental model to explain the physiochemical properties of polymer ultra-thin films and polymers in confined geometries. The broader impacts of this activity include: (1) providing guidance on and opportunities for overcoming some of the roadblocks in microlithography to benefit the microelectronics industry, (2) providing guidance on methods to enhance polymer membrane performance for fuel cells and gas separations, (3) educating undergraduate and graduate students in a manner that synergistically blends modeling and experiment, and (4) enhancing minority and secondary school education in science and engineering.Background: Currently there are significant knowledge gaps in fundamentally understanding the thermodynamic and transport properties of polymer thin films and polymers in confined systems (e.g. composite membranes), and the dependence of these properties on polymer type, interface type, film thickness, and preparation conditions. Polymers in thin film and confined geometry configurations are a critical element today in a variety of applications including semiconductor manufacturing, biomedical and tissue engineering, industrial gas separations, and fuel cells. The lack of a fundamental understanding of the physiochemical properties of polymer thin films poses a roadblock to the rational design of improved materials and processes for these applications. Recent polymer film studies have shown that a wide variety of polymer properties deviate from bulk behavior as the film thickness decreases below some critical thickness that varies depending on the property of interest. No single theory proposed thus far can adequately explain all of the observed thin film behavior, and in many cases the observed changes in film properties appear to be inconsistent with one another. For example, it has been observed that the glass transition temperature (Tg) of supported polymer thin films can decrease when the film is coated on a weakly interacting substrate and current explanations of this are based on increases in polymer chain mobility near the film surfaces. On the other hand, recent experiments by the PIs have shown that the diffusion coefficient of small penetrant molecules in such supported thin films decreases dramatically as the film thickness decreases. The simple chain mobility argument does not explain this and would in fact predict an opposite behavior. Recent measurements by the PIs also suggest that the proton conductivity of ultra-thin polymer films does not exhibit reductions similar to the gaseous penetrant behavior as film thickness decreases.
克里夫·亨德森 / 佐治亚研究所技术这项工作的首要目标是进一步表征聚合物超薄膜和聚合物在受限几何形状中的扩散行为,阐明这种行为的长度尺度和幅度,并对这些机制形成自洽和全面的基本理解。对观察到的现象负责。 PI 的实验和分子模拟初步结果表明,基于聚合物链迁移率和自由体积分布变化的新模型可以解释所有观察到的玻璃化转变、热膨胀系数、扩散和质子传导率结果一致的方式。 结合起来,这两种协同机制可以导致迄今为止观察到的聚合物薄膜行为的丰富多样性。 我们组建了一个独特的团队,将实验表征与分子模拟相结合,以阐明这些薄膜现象的起源。 Clifford Henderson 教授指导实验研究,在聚合物表征和聚合物薄膜方面拥有丰富的经验。 Peter Ludovice 教授在分子模拟方面拥有丰富的专业知识,负责监督建模工作。该提案的智力优点可以概括地定义为:(1)表征超薄聚合物薄膜的扩散行为;(2)开发一个基本模型来解释聚合物超薄膜和受限几何形状中聚合物的物理化学性质。这项活动的更广泛影响包括:(1) 为克服微光刻技术中的一些障碍提供指导和机会,以使微电子行业受益,(2) 为增强燃料电池和气体分离聚合物膜性能的方法提供指导,( 3)以建模和实验相结合的方式对本科生和研究生进行教育,以及(4)加强少数民族和中学的科学与工程教育。背景:目前在从根本上理解热力学和输运性质方面存在着巨大的知识差距聚合物薄膜和聚合物在受限系统(例如复合膜)中的性能,以及这些特性对聚合物类型、界面类型、薄膜厚度和制备条件的依赖性。 薄膜和受限几何结构的聚合物是当今各种应用的关键元素,包括半导体制造、生物医学和组织工程、工业气体分离和燃料电池。 对聚合物薄膜的物理化学性质缺乏基本了解,为这些应用的改进材料和工艺的合理设计带来了障碍。最近的聚合物薄膜研究表明,当薄膜厚度降低到某个临界厚度以下时,多种聚合物性能会偏离本体行为,而临界厚度随感兴趣的性能而变化。 迄今为止,没有任何一种理论能够充分解释所有观察到的薄膜行为,并且在许多情况下,观察到的薄膜特性变化似乎彼此不一致。 例如,据观察,当薄膜涂覆在弱相互作用的基材上时,支撑聚合物薄膜的玻璃化转变温度(Tg)会降低,目前对此的解释是基于薄膜表面附近聚合物链迁移率的增加。 另一方面,PI最近的实验表明,随着薄膜厚度的减小,小渗透分子在这种支撑薄膜中的扩散系数急剧下降。 简单的链移动性论点并不能解释这一点,而且实际上会预测相反的行为。 PI 最近的测量还表明,随着薄膜厚度的减小,超薄聚合物薄膜的质子电导率并没有表现出类似于气体渗透行为的降低。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clifford Henderson其他文献

Clifford Henderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clifford Henderson', 18)}}的其他基金

Conference: 63rd International Conference on Electron, Ion, and Photon Beam Technologies and Nanofabrication (EIPBN); Minneapolis, Minnesota; May 28-31, 2019
会议:第63届电子、离子和光子束技术与纳米加工国际会议(EIPBN);
  • 批准号:
    1935293
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
  • 批准号:
    1938893
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Templated Manufacturing of Graphene
EAGER:石墨烯的模板化制造
  • 批准号:
    1251639
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Understanding and Exploiting the Transport Behavior of Polymers in Confined Geometries
了解和利用聚合物在受限几何形状中的传输行为
  • 批准号:
    0700760
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Rational Design of Advanced Photoresist Materials for 193 nm and 157 nm Lithography
目标:193 nm 和 157 nm 光刻先进光刻胶材料的合理设计
  • 批准号:
    0300467
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Materials and Processes for Microlithography, Patterning and Surface Modification (Nanoscale)
职业:微光刻、图案化和表面改性(纳米级)的材料和工艺
  • 批准号:
    9985196
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

面向开放场景的多模态视频表征与理解研究
  • 批准号:
    62376069
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玉米苞叶数目主效QTL基因qHLN1的图位克隆和遗传机理解析
  • 批准号:
    32370672
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
假单胞菌木质素解聚酶系催化、分泌机理解析,以构建木质素产能细胞工厂
  • 批准号:
    32370115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向智能化仿真社会实验的具身人物视觉理解与身份构建
  • 批准号:
    62302296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Systematic understanding of cross-correlated coupling and quantum transport based on augmented multipoles and exploring for functional materials
基于增广多极子的互相关耦合与量子输运的系统理解及功能材料的探索
  • 批准号:
    21H01037
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical study for homeostasis in living systems based on network structure
基于网络结构的生命系统稳态数学研究
  • 批准号:
    19H03196
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Clarification of the multi-layered structure of stationary solutions induced by the cross-diffusion limit in the Lotka-Volterra system
澄清 Lotka-Volterra 系统中交叉扩散极限引起的稳态解的多层结构
  • 批准号:
    19K03581
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High performance linear solver for advanced computational electromagnetics
用于高级计算电磁学的高性能线性求解器
  • 批准号:
    19H04122
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hierarchical data mining toward molecular dynamics of biomolecules and allication to pharmacy
生物分子分子动力学的分层数据挖掘及其对药学的应用
  • 批准号:
    19K03653
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了