Collaborative Research: Molecular Structure and Phase Separation Behavior of Novel Phosphate-glass / Polymer Hybrids Studied by Advanced Solid-state NMR and Rheometry Methods

合作研究:通过先进的固态核磁共振和流变测量方法研究新型磷酸盐玻璃/聚合物杂化物的分子结构和相分离行为

基本信息

  • 批准号:
    0652400
  • 负责人:
  • 金额:
    $ 9.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: The results of this work will play an important role in the nation?s interest in developing advanced materials for new and existing applications. The materials are expected to possess a number of desirable properties that will make them useful applications such as solid electrolytes for solid-state batteries or polymer electrolyte membranes for fuel cells and as storage materials for nuclear wastes. The facile synthesis and desirable properties of the hybrid materials will make them excellent model systems for exploring feasibility of new routes for driving inorganic glasses and organic polymers to self-assemble into useful materials, making them widely applicable. The project will provide research training to graduate students and will also take advantage of complementary expertise and research resources at University of Southern Mississippi, ETH Zurich, and Sandia National Laboratories (SNL). The project will also advance the graduate students careers by learning how fundamental interdisciplinary knowledge can be used to solve a practical problem. The strong working relations the investigators have developed via an existing NSF-supported U.S.-Switzerland research cooperation, and with SNL will provide critical guidance and clear focus on relevance of the project. The University of Southern Mississippi has a sizable minority student population who could benefit from training in the broad area of materials science and engineering.TECHNICAL DETAILS: The ultimate goal of this collaborative interdisciplinary research project is to better understand the fundamental science governing the phase separation dynamics, thermorheology, and structure formation in low-Tg inorganic phosphate-glass (Pglass)/polymer hybrid system and to identify accurate, predictive models of relationships between fundamental molecular structures and rheological properties of the hybrids. This is a first step toward establishing rational synthesis and design principles to guide the synthesis and processing of new hybrid materials. By using a variety of experimental methods such as advanced solid-state NMR and thermorheological techniques, the investigators propose to understand the Pglass phase separation behavior and its effect on microstructure of the novel low-Tg inorganic Pglass/polymer hybrid materials, and to identify the technological potential of this new class of hybrid materials. The results obtained from these studies will used to test whether or not existing theories on phase separation and self-assembly reported in the literature on simple polymer systems are applicable, and may reduce or eliminate costly "trial and error" practices common in the literature and industry. In addition, advanced solid-state NMR methods for reliably measuring and characterizing the hybrid structure and interactions on the molecular and the nanometer scale will be used and improved. To avoid disappointingly slow progress in prior attempts, mostly in industry, to follow one approach while neglecting the others, this proposal combines the three approaches to rational design and synthesis of materials (i.e., at the molecular level, by materials processing, and by surface chemistry). The diversification of approach and cooperation discussed in this proposal should become more critical as ceramic materials research continues to overlap other materials such as polymers and electro-optical materials. The interface and the fortuitous miscibility in the liquid state between the hybrid components for the rheology and phase separation, the extent of mixing, particularly at the interface between the phase domains and sizes, the favorable reactions between the hybrid components, and the remarkable hybrid viscosity decrease by the Pglass addition will be critical in determining a number of the desirable hybrid properties.
非技术描述:这项工作的结果将对国家为新的和现有的应用开发先进材料的兴趣发挥重要作用。这些材料预计将具有许多理想的特性,使其具有有用的应用,例如用于固态电池的固体电解质或用于燃料电池的聚合物电解质膜以及作为核废料的储存材料。杂化材料的简便合成和理想性能将使它们成为优秀的模型系统,用于探索驱动无机玻璃和有机聚合物自组装成有用材料的新路线的可行性,使其广泛应用。该项目将为研究生提供研究培训,并将利用南密西西比大学、苏黎世联邦理工学院和桑迪亚国家实验室 (SNL) 的互补专业知识和研究资源。该项目还将通过学习如何使用基本的跨学科知识来解决实际问题来促进研究生的职业生涯。研究人员通过现有的 NSF 支持的美国-瑞士研究合作以及与 SNL 建立的牢固的工作关系将为该项目的相关性提供关键指导和明确的重点。南密西西比大学拥有相当多的少数族裔学生群体,他们可以从材料科学和工程广泛领域的培训中受益。技术细节:这个跨学科合作研究项目的最终目标是更好地了解控制相分离动力学的基础科学低 Tg 无机磷酸盐玻璃 (Pglass)/聚合物杂化体系中的热流变学和结构形成,并确定杂化物基本分子结构和流变特性之间关系的准确预测模型。这是建立合理合成和设计原则以指导新型混合材料合成和加工的第一步。通过使用先进的固态核磁共振和热流变技术等多种实验方法,研究人员提出了解 Pglass 相分离行为及其对新型低 Tg 无机 Pglass/聚合物杂化材料微观结构的影响,并确定这种新型混合材料的技术潜力。从这些研究中获得的结果将用于测试文献中报道的关于简单聚合物系统的现有相分离和自组装理论是否适用,并且可以减少或消除文献和文献中常见的昂贵的“试错”实践。行业。此外,将使用和改进先进的固态核磁共振方法,以可靠地测量和表征分子和纳米尺度上的杂化结构和相互作用。为了避免先前的尝试(主要是在工业领域)进展缓慢,只遵循一种方法而忽略其他方法,该提案结合了合理设计和合成材料的三种方法(即在分子水平、通过材料加工和通过表面处理)化学)。随着陶瓷材料研究继续与聚合物和电光材料等其他材料重叠,本提案中讨论的方法和合作的多样化应该变得更加重要。用于流变和相分离的杂化组分之间的界面和液态下的偶然混溶性、混合程度,特别是在相域和尺寸之间的界面处、杂化组分之间的有利反应以及显着的杂化粘度添加 Pglass 所带来的降低对于确定许多所需的混合性能至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Klaus Schmidt-Rohr其他文献

Klaus Schmidt-Rohr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Klaus Schmidt-Rohr', 18)}}的其他基金

Collaborative Research: Revealing the Interactions and Dynamics in Framework-Polymer Composite Materials
合作研究:揭示骨架聚合物复合材料的相互作用和动力学
  • 批准号:
    2205457
  • 财政年份:
    2022
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a 400 MHz Solid-State NMR Spectrometer Console for Advanced NMR Spectroscopy of Complex Organic and Hybrid Materials
MRI:购买 400 MHz 固态 NMR 波谱仪控制台,用于复杂有机和混合材料的高级 NMR 波谱分析
  • 批准号:
    1726346
  • 财政年份:
    2017
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Air-Oxidation of Biomass Chars - Structural Changes and Implications for Retention and Reactions of Contaminants
合作研究:生物质炭的空气氧化——结构变化以及对污染物保留和反应的影响
  • 批准号:
    1709614
  • 财政年份:
    2017
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Continuing Grant
New Solid-State NMR Techniques for Analyzing Insoluble Organic Matter
用于分析不溶性有机物的新型固态核磁共振技术
  • 批准号:
    0138117
  • 财政年份:
    2002
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Continuing Grant
Acquisition of a 400-MHz Solid-State NMR Spectrometer for Investigations of Synthetic and Naturally Occurring Polymers
购买 400 MHz 固态核磁共振波谱仪用于研究合成和天然存在的聚合物
  • 批准号:
    0116430
  • 财政年份:
    2001
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
Elucidation of Polymer Conformation, Phase Structure, and Dynamics by Multidimensional Solid-State NMR
通过多维固态 NMR 阐明聚合物构象、相结构和动力学
  • 批准号:
    9703916
  • 财政年份:
    1997
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PKP2 m6A修饰下调促进生长激素垂体腺瘤侵袭生长的分子机制研究
  • 批准号:
    82372624
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
催化烯烃直接硝化的P450过氧化物酶的分子设计与反应机制研究
  • 批准号:
    22307125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
保守的mRNA核质转运蛋白DDX-19调控生殖颗粒稳态的分子机制研究
  • 批准号:
    32370729
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
USP46通过去泛素化修饰RAP80促进同源重组修复的分子机制及其在三阴乳腺癌中的功能研究
  • 批准号:
    82373150
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321044
  • 财政年份:
    2024
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了