CAREER: Fundamental and Applied Studies of Novel Electrokinetic Effects
职业:新型动电效应的基础和应用研究
基本信息
- 批准号:0645097
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-15 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractCBET-0645097T. Squires, UC-Santa BarbaraMicrofabricated fluidic devices have the potential to revolutionize chemistry, biology, and medicine, much as the integrated circuit did for computing, science and technology. Sophisticated devices have already been developed to perform tasks that would be vastly more expensive, more difficult, or even impossible with macro-scale techniques. If microfluidic flows can be driven in a self-contained, portable fashion, such devices could be taken out of the lab and into the field (or under the skin). Electrokinetic flows present many advantages towards microfluidic portability; however, fundamental issues have thus far precluded their use in practical systems.This CAREER proposal describes a theoretical and experimental program with two central goals: 1) a fundamental understanding of electro-osmotic flow over liquid/liquid interfaces, and 2) the exploitation of these and related phenomena to develop truly portable microfludic manipulation systems. To achieve the first goal, the PI will develop and employ a microfluidic system that will enable, for the first time, direct measurements of electro-osmotic flow over liquid/liquid interfaces, while providing a control over the input 'variables' that is unprecedented (even impossible) in colloidal studies. As such, this will allow the first direct and stringent test of electrokinetic theories. To achieve the second goal, the PI will develop a low-voltage, high-pressure microfluidic pump that employs transverse induced-charge electrokinetic phenomena within a novel anisotropic porous bed. Intellectual Merit: The microfluidic platform proposed will allow groundbreaking, fundamental studies in a field that is nearly two centuries old. Previous colloidal studies probed electrokinetic flows only indirectly, and allowed little or no control over surface charge density, geometry, or double-layer dynamics. The proposed system allows direct control over all of these quantities, and directly measures the consequent flows. A variety of physical regimes will thus be available for study: linear and nonlinear electrokinetics, transient double-layer effects, and surface conductivity. The direct application of the resulting new knowledge to microfluidic manipulation systems will significantly broaden our understanding of induced-charge electrokinetics, both in testing theories for asymmetric bodies and in developing statistical theories for concentrated collections. In all cases, the PI will emphasize the simplest, most intuitive systems to elucidate key phenomena.Broader Impacts: The proposed electrokinetic pump may be immediately integrated intoexisting elastomeric microfluidic devices for rapid and broad impact. This will enable an entirely portable, robust, and versatile fluidic manipulation system and make possible hand-held hazard sensors and medical diagnostic tools, as well as implantable biomedical devices. The PI will continue his efforts to bridge the divide between the "application" and "fundamental" communities in microfluidics, and has designed this CAREER program to demonstrate the value of fundamental understanding in engineering solutions to real-world challenges, and the impact one can have by seriously considering real-world challenges in designing fundamental research. He will promote this view in his role as the "fundamentals expert" on the editorial board of the new American Institute of Physics journal Biomicrofluidics. He will continue to leverage existing, successful programs at UCSB (such as the California Alliance for Minority Participation) to integrate undergraduates and under-represented minorities into his research, and will include high-school students and teachers. Education: The PI seeks to re-invigorate student interest in fluid and transport phenomena by using microfluidics as an exciting motivational framework, by emphasizing physically intuitive understanding, and by addressing the variety of disciplines and applications that depend on such phenomena. He will use his review article on microfluidic physical phenomena as the basis for a multidisciplinary special-topics course and as the foundation for a textbook. He will develop and web-publish a freshman seminar course in microfluidics for non-scientists/engineers to broaden the impact of the research, and to more generally cultivate an appreciation for the variety of interesting, exciting, surprising and beautiful phenomena that occur in microfluidics.
摘要 CBET-0645097T。 Squires,加州大学圣塔芭芭拉分校微型流体设备有可能彻底改变化学、生物学和医学,就像集成电路对计算、科学和技术的影响一样。复杂的设备已经被开发出来,可以执行那些用宏观技术来说更加昂贵、更加困难、甚至不可能完成的任务。如果微流体可以以独立、便携式的方式驱动,那么这种设备就可以从实验室带到现场(或皮下)。动电流对于微流体的便携性具有许多优势;然而,到目前为止,基本问题阻碍了它们在实际系统中的使用。这个职业提案描述了一个理论和实验计划,有两个中心目标:1)对液/液界面上的电渗流的基本理解,2)利用这些和相关现象可以开发真正的便携式微流体操纵系统。为了实现第一个目标,PI 将开发并采用微流体系统,该系统将首次能够直接测量液/液界面上的电渗流,同时提供对输入“变量”的前所未有的控制(甚至不可能)在胶体研究中。因此,这将允许对动电理论进行首次直接和严格的测试。为了实现第二个目标,PI 将开发一种低压高压微流体泵,该泵在新型各向异性多孔床内采用横向感应电荷电动现象。智力优势:所提出的微流控平台将在一个已有近两个世纪历史的领域进行突破性的基础研究。以前的胶体研究仅间接探测动电流,并且很少或根本无法控制表面电荷密度、几何形状或双层动力学。所提出的系统允许直接控制所有这些量,并直接测量随后的流量。因此,各种物理状态可用于研究:线性和非线性电动学、瞬态双层效应和表面电导率。 由此产生的新知识直接应用于微流体操纵系统将显着拓宽我们对感应电荷电动学的理解,无论是在测试不对称体的理论还是在开发集中集合的统计理论方面。在所有情况下,PI 将强调最简单、最直观的系统来阐明关键现象。 更广泛的影响:所提出的电动泵可以立即集成到现有的弹性体微流体装置中,以产生快速和广泛的影响。这将实现完全便携式、坚固且多功能的流体操纵系统,并使手持式危险传感器和医疗诊断工具以及可植入生物医学设备成为可能。 PI 将继续努力弥合微流体领域“应用”和“基础”社区之间的鸿沟,并设计了此职业计划,以展示对现实世界挑战的工程解决方案的基本理解的价值,以及人们可以产生的影响在设计基础研究时认真考虑现实世界的挑战。他将在美国物理研究所新刊《Biomicrofluidics》杂志编辑委员会中担任“基础专家”,以推广这一观点。他将继续利用加州大学圣巴巴拉分校现有的成功项目(例如加州少数族裔参与联盟),将本科生和代表性不足的少数族裔纳入他的研究中,其中包括高中生和教师。教育:PI 旨在通过使用微流体作为令人兴奋的激励框架、强调物理直观理解以及解决依赖于此类现象的各种学科和应用,重新激发学生对流体和运输现象的兴趣。他将利用他关于微流体物理现象的评论文章作为多学科专题课程的基础和教科书的基础。他将为非科学家/工程师开发并网络发布微流体学新生研讨会课程,以扩大研究的影响,并更广泛地培养对微流体中发生的各种有趣、令人兴奋、令人惊讶和美丽的现象的欣赏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Squires其他文献
A discourse analysis of the Japanese particle sa
日语助词sa的语篇分析
- DOI:
10.1075/prag.4.1.01squ - 发表时间:
1994 - 期刊:
- 影响因子:1.1
- 作者:
Todd Squires - 通讯作者:
Todd Squires
Todd Squires的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Squires', 18)}}的其他基金
UNS: Exploiting novel surface rheology to probe and tailor 2D suspension dynamics
UNS:利用新颖的表面流变学来探测和定制二维悬浮动力学
- 批准号:
1512833 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Probing and directing colloidal migration by sculpting chemical micro-environments
通过塑造化学微环境来探测和指导胶体迁移
- 批准号:
1438779 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Active and Nonlinear Microrheology
合作研究:主动和非线性微流变学
- 批准号:
0730270 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
变质岩中主要变质矿物化学成分环带性质的基本规律研究及其应用
- 批准号:42330303
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
加权型线性正则变换的基本原理及其应用研究
- 批准号:62261055
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
一般闭子概形的Nevanlinna理论第二基本定理及其应用
- 批准号:12271275
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
区分泡沫和资产基本面改善的新检验及其在我国资本市场的应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可压缩螺旋湍流的基本理论与应用研究
- 批准号:12072349
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
11th Annual Meeting of International Cytokine & Interferon Society
第十一届国际细胞因子年会
- 批准号:
10753947 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Mapping the Pain Landscape: From Molecules to Medicine
绘制疼痛图谱:从分子到医学
- 批准号:
10609162 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Diabetes Institute Summer Interprofessional Research Experience (DISIRE) for Undergraduates
糖尿病研究所本科生暑期跨专业研究体验 (DISIRE)
- 批准号:
10331413 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别: