CAREER: Machine Learning Approaches for Genome-wide Biological Network Inference

职业:全基因组生物网络推理的机器学习方法

基本信息

  • 批准号:
    0644366
  • 负责人:
  • 金额:
    $ 69.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-05-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

NSF-0644366Chen, Xue-WenThe objectives of this research program are (1) to develop and apply novel computationalapproaches for uncovering genome-wide networks of interactions between genes and proteins, and (2) to conduct related educational activities in a newly established bioinformatics program in the Department of Electrical Engineering and Computer Science at the University of Kansas. Specifically, built upon reconstructing biological networks of moderate size, the new research will computationally uncover genome-wide biological networks and map interactions of genes and proteins across a variety of organisms. The research directions include: Simultaneously integrating multiple biological knowledge into dynamic Bayesian networks for learning networks of gene interactions; learning networks of protein interactions from heterogeneous data; learning integrated networks of gene and protein interactions; learning genome-wide networks of gene and protein interactions; and cross-species network learning. It will advance the state of the art by developing machine learning methods for effectively integrating multiple prior knowledge from different sources of data, including learning for highly heterogeneous data and large-scale network. The research will also produce new methods and user-friendly software that can be applied by molecular biologists to gain insight into diverse biological problems, such as how biological processes are regulated on a genome scale and how individual bio-molecules interact with one another in the cell.Learning with prior knowledge and highly heterogeneous data sources are fundamental to computational biology, information theory, machine learning, data mining, and other areas. Thus, the proposed research will benefit a variety of application domains including research in biology and medicine. The biological discovery derived from this project will also contribute to a variety of fields that include agriculture development, rational drug design, and health care. The research program will foster and facilitate collaborations between biologists and the PI. The educational components are closely tied to the research activities, which include (1) developing and improving bioinformatics courses that are closely related to the research outlined here and integrating them into the core bioinformatics curriculum, and (2) providing special training opportunities in the interdisciplinary area of bioinformatics for a wide-range of students, from high school through graduate school, including groups typically underrepresented in the field of science and technology.
NSF-0644366陈学文该研究项目的目标是(1)开发和应用新的计算方法来揭示基因和蛋白质之间相互作用的全基因组网络,以及(2)在新建立的生物信息学项目中开展相关的教育活动在堪萨斯大学电气工程和计算机科学系。具体来说,基于重建中等规模的生物网络,这项新研究将通过计算揭示全基因组生物网络,并绘制各种生物体中基因和蛋白质的相互作用图谱。研究方向包括:将多种生物知识同时整合到动态贝叶斯网络中,用于学习基因相互作用的网络;从异构数据中学习蛋白质相互作用的网络;学习基因和蛋白质相互作用的集成网络;学习基因和蛋白质相互作用的全基因组网络;和跨物种网络学习。它将通过开发有效集成来自不同数据源的多种先验知识的机器学习方法来推进最先进的技术,包括高度异构数据和大规模网络的学习。该研究还将产生新的方法和用户友好的软件,分子生物学家可以应用这些方法和用户友好的软件来深入了解不同的生物学问题,例如如何在基因组规模上调节生物过程以及单个生物分子如何在基因组中彼此相互作用。利用先验知识和高度异构的数据源进行学习是计算生物学、信息论、机器学习、数据挖掘和其他领域的基础。因此,拟议的研究将有益于各种应用领域,包括生物学和医学研究。该项目的生物学发现也将为农业发展、合理药物设计和医疗保健等多个领域做出贡献。该研究计划将促进和促进生物学家和 PI 之间的合作。教育组成部分与研究活动密切相关,其中包括(1)开发和改进与此处概述的研究密切相关的生物信息学课程,并将其整合到核心生物信息学课程中,以及(2)提供跨学科的特殊培训机会面向从高中到研究生的广大学生的生物信息学领域,包括在科学和技术领域代表性不足的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xue-Wen Chen其他文献

On the emission pattern of nanoscopic emitters in planar anisotropic matrix and nanoantenna structures
  • DOI:
    10.1039/c9nr00235a
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Pu Zhang;Peng-Long Ren;Xue-Wen Chen
  • 通讯作者:
    Xue-Wen Chen
Fuzzy control for vehicle status estimation considering roll stability and its application in target recognition of automobile cruise system
考虑侧倾稳定性的车辆状态估计模糊控制及其在汽车巡航系统目标识别中的应用
  • DOI:
    10.1177/1687814017701698
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Xue-Wen Chen;Jin-Guo Zhang;Yue-Zhou;Yan-Jun Liu
  • 通讯作者:
    Yan-Jun Liu
A unified physically-based constitutive model for describing strain hardening effect anddynamic recovery behavior of a Ni-based superalloy
描述镍基高温合金应变硬化效应和动态恢复行为的统一物理本构模型
  • DOI:
    dx.10.1557/jmr.2015.368
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Y.C. Lin;Dong-Xu Wen;Yuan-Chun Huang;Xiao-Min Chen;Xue-Wen Chen
  • 通讯作者:
    Xue-Wen Chen
Perfectly matched layers for nonlocal media with hydrodynamic-Drude description: a transformation optics approach
具有流体动力学 Drude 描述的非局域介质的完美匹配层:变换光学方法
  • DOI:
    10.1364/oe.25.024183
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Pu Zhang;Xuejiang Xie;Xue-Wen Chen
  • 通讯作者:
    Xue-Wen Chen
Guided surface-volume plasmon modes in an ultrathin film at Drude damping limit
德鲁德阻尼极限下超薄膜中的引导表面体积等离子体激元模式
  • DOI:
    10.1364/ol.42.003295
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Pu Zhang;Xuejiang Xie;Xue-Wen Chen
  • 通讯作者:
    Xue-Wen Chen

Xue-Wen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xue-Wen Chen', 18)}}的其他基金

CDI-Type II: Computational Methods to Enable an Invertebrate Paleontology Knowledgebase
CDI-Type II:支持无脊椎动物古生物学知识库的计算方法
  • 批准号:
    1308762
  • 财政年份:
    2014
  • 资助金额:
    $ 69.13万
  • 项目类别:
    Standard Grant
CAREER: Machine Learning Approaches for Genome-wide Biological Network Inference
职业:全基因组生物网络推理的机器学习方法
  • 批准号:
    1347706
  • 财政年份:
    2012
  • 资助金额:
    $ 69.13万
  • 项目类别:
    Continuing Grant
CDI-Type II: Computational Methods to Enable an Invertebrate Paleontology Knowledgebase
CDI-Type II:支持无脊椎动物古生物学知识库的计算方法
  • 批准号:
    1028098
  • 财政年份:
    2010
  • 资助金额:
    $ 69.13万
  • 项目类别:
    Standard Grant

相似国自然基金

通过机器学习和多模式验证聚焦新靶点ENHO/Adropin在系统性硬化症中的作用和机制研究
  • 批准号:
    82371818
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习开发更安全有效的有机磷阻燃剂的研究
  • 批准号:
    22306030
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
网络入侵检测机器学习模型多维鲁棒性评测方法研究
  • 批准号:
    62372126
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于cfDNA甲基化的机器学习模型在结直肠癌早期诊断中的研究
  • 批准号:
    82302640
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 69.13万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 69.13万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 69.13万
  • 项目类别:
    Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 69.13万
  • 项目类别:
    Continuing Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
  • 批准号:
    2340273
  • 财政年份:
    2024
  • 资助金额:
    $ 69.13万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了