Harmonic Analysis with Applications to Mathematical Physics

调和分析及其在数学物理中的应用

基本信息

  • 批准号:
    0617854
  • 负责人:
  • 金额:
    $ 8.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

PI: Wilhelm Schlag, California Institute of TechnologyDMS-0300081----------------------------------------------------Abstract:---------------------------------------------This proposal deals with several problems on the interface between mathematical physics and harmonic analysis. The author intends to pursue his work on Schroedinger equations with both deterministic and random potentials. Some questions remain on discrete Schroedinger operators on the line with quasi-periodic potentials, whereas the case of potentials given by non-independent but more strongly mixing dynamics than quasi-periodic presents many serious challenges and more needs to be done in this area. For time-dependent equations questions remain concerning dispersive estimates, both for time-dependent and time-independent potentials. For the latter, it is unknown whether or not the usual dispersive estimate holds for potentials that decay faster than an inverse square power, at least for dimensions two and larger. The author recently established this in one dimension, but in two dimensions dispersive estimatesunder the assumption of strong polynomial decay are unknown. He believes, however, that dispersive estimates in the two-dimensional case under the assumption of sufficiently fast decaying potentials is an accessible problem. The main interest in linear estimates lies with nonlinear applications. One example is given by the proof of asymptotic stability of weakly interacting multi-soliton solutions, which was recently established by Rodnianski, Soffer, and the author. It relied heavily on dispersive estimates for charge transfer models. Much remains to be done in this area, both in terms of nonlinear Schroedinger equations in general (global solutions for the critical defocusing three-dimensional equation), as well as questions concerning the dynamics of nonlinear bound states (solitons). In addition, the author intends to work on problems in harmonic analysis or applications thereof to problems outside of mathematical physics.Much of the success of science and engineering lies with its effective use of mathematical tools, both in terms of modeling and numerical studies on computers. Mathematicians play an important role in developing those methods and making them available to scientist and engineers. This proposal aims at addressing mathematical problems that for the most part originate in mathematical physics. The aforementioned nonlinear Schroedinger equations arise in variousapplications, e.g., optics. A bound state (soliton) for such a nonlinear equation represents a particle or beam that travels without disintegrating. An important issue is to understand the stability or instability of such an object. I.e., do they persist under small perturbations or not?Clearly, any commercial application of a soliton in optical media will require stability of the soliton. It turns out that the theoretical understanding of these issues is very difficult, often requiring new insights into mathematical problems. This proposal aims at addressing such problems.
PI:Wilhelm Schlag,加州理工学院DMS-0300081---------------------------------------------------- - - - - - - -抽象的: - - - - - - - - - - - - - - - - - - ----------该提案涉及数学物理和调和分析之间的接口上的几个问题。作者打算继续研究具有确定性和随机势的薛定谔方程。准周期势线上的离散薛定谔算子仍然存在一些问题,而由非独立但比准周期更强烈的混合动力学给出的势的情况提出了许多严峻的挑战,并且在该领域需要做更多的工作。对于时间相关方程,关于时间相关和时间无关势的色散估计的问题仍然存在。对于后者,目前尚不清楚通常的色散估计是否适用于比平方反幂次方衰减更快的势能,至少对于二维和更大的维度来说是这样。作者最近在一维中建立了这一点,但在强多项式衰减假设下的二维色散估计是未知的。然而,他认为,在假设势能衰减足够快的情况下,二维情况下的色散估计是一个容易解决的问题。线性估计的主要兴趣在于非线性应用。弱相互作用多孤子解的渐近稳定性证明给出了一个例子,这是由 Rodnianski、Soffer 和作者最近建立的。它严重依赖于电荷转移模型的分散估计。在这个领域还有很多工作要做,无论是一般的非线性薛定谔方程(临界散焦三维方程的全局解),还是有关非线性束缚态(孤子)动力学的问题。此外,作者打算研究调和分析中的问题或其在数学物理之外的问题中的应用。科学和工程的成功很大程度上取决于数学工具的有效使用,无论是在计算机建模还是数值研究方面。数学家在开发这些方法并将其提供给科学家和工程师方面发挥着重要作用。该提案旨在解决大部分源自数学物理学的数学问题。上述非线性薛定谔方程出现在各种应用中,例如光学。这种非线性方程的束缚态(孤子)表示在不分解的情况下传播的粒子或光束。一个重要的问题是了解此类物体的稳定性或不稳定性。即,它们在小扰动下是否持续存在?显然,孤子在光学介质中的任何商业应用都需要孤子的稳定性。事实证明,从理论上理解这些问题非常困难,往往需要对数学问题有新的见解。本提案旨在解决此类问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilhelm Schlag其他文献

Global center stable manifold for the defocusing energy critical wave equation with potential
具有势的散焦能量临界波动方程的全局中心稳定流形
  • DOI:
    10.1049/cp.2012.1672
  • 发表时间:
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Hao Jia;Baoping Liu;Wilhelm Schlag;Guixiang Xu
  • 通讯作者:
    Guixiang Xu
On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation
一维聚焦三次Klein-Gordon方程孤子的余维一稳定性
Non-perturbative localization for quasi-periodic Jacobi block matrices
准周期雅可比块矩阵的非微扰定位
Invariant Manifolds and Dispersive Hamiltonian Evolution Equations
不变流形和色散哈密顿演化方程
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenji Nakanishi;Wilhelm Schlag
  • 通讯作者:
    Wilhelm Schlag
Asymptotic stability of the sine-Gordon kink under odd perturbations
奇数扰动下正弦戈登扭结的渐近稳定性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jonas Lührmann;Wilhelm Schlag
  • 通讯作者:
    Wilhelm Schlag

Wilhelm Schlag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilhelm Schlag', 18)}}的其他基金

Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
  • 批准号:
    2350356
  • 财政年份:
    2024
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Spectral Theory and Nonlinear Waves
谱理论和非线性波
  • 批准号:
    2054841
  • 财政年份:
    2021
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1842197
  • 财政年份:
    2018
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1902691
  • 财政年份:
    2018
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1764384
  • 财政年份:
    2018
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1500696
  • 财政年份:
    2015
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Global dynamics for nonlinear dispersive equations
非线性色散方程的全局动力学
  • 批准号:
    1160817
  • 财政年份:
    2012
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Harmonic Analysis, Mathematical Physics, and Nonlinear PDE
调和分析、数学物理和非线性偏微分方程
  • 批准号:
    0653841
  • 财政年份:
    2007
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
  • 批准号:
    0300081
  • 财政年份:
    2003
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Nonperturbative methods for quasiperiodic discrete Schroedinger equations on the line
在线准周期离散薛定谔方程的非微扰方法
  • 批准号:
    0241930
  • 财政年份:
    2002
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多源时空大数据驱动的广海域船联网数据传输算法研究
  • 批准号:
    61902367
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
超空间众包数据管理关键技术
  • 批准号:
    61902023
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
基于时空数据的多平台用户连接关键技术研究
  • 批准号:
    61902270
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
空间约束的在线包组推荐优化与公平性研究
  • 批准号:
    61862013
  • 批准年份:
    2018
  • 资助金额:
    37.0 万元
  • 项目类别:
    地区科学基金项目
大规模知识图谱上相似节点查询技术研究
  • 批准号:
    61702015
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
  • 批准号:
    2246779
  • 财政年份:
    2023
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
  • 批准号:
    RGPIN-2017-05712
  • 财政年份:
    2022
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
  • 批准号:
    RGPIN-2017-05712
  • 财政年份:
    2022
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Discovery Grants Program - Individual
Multilinear Harmonic Analysis and Applications
多线性谐波分析及应用
  • 批准号:
    2154356
  • 财政年份:
    2022
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
  • 批准号:
    RGPIN-2017-05712
  • 财政年份:
    2021
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了