Regression Diagnostics in Survey Data

调查数据中的回归诊断

基本信息

项目摘要

Diagnostics for linear regression models are included as options in many statistical packages and now are readily available to analysts. However, these tools are generally aimed at ordinary or weighted least squares regression and do not account for stratification, clustering, and survey weights that are features of data sets collected in complex sample surveys. The ordinary least squares diagnostics can mislead users because the variances of model parameter estimates will usually be estimated incorrectly by the standard procedures. The variance or standard error estimates are an intimate part of many diagnostics. This research will adapt existing diagnostics for use with survey data, and, where necessary, develop new ones. This project also will study the properties of existing linear regression diagnostics when they are applied to complex survey data. Extensions are needed to cover both clustered and unclustered data. The particular techniques to be studied are: leverages for linear regression and their heuristic cutoffs for influence; distributions of leverages, including histograms and quantiles; modification of unit-deletion measures of influence on model parameter estimates and predicted values and the rules-of-thumb used to identify influential observations; change in standard error estimates due to deletion of an observation or groups of observations; and extension of collinearity diagnostics, including variance inflation factors and variance decompositions for parameter estimates.The data collected in many surveys sponsored by U.S. government agencies and other domestic and international organizations are used to fit statistical models. These models are used to understand the correlates of disease, unemployment, education achievement levels, and other topics. The surveys are typically stratified, single or multistage surveys where units can have substantially different survey weights. Some examples of substantive areas are medical conditions, expenditures for medical care, the social welfare of families and children, and the status of progress in education. Evaluation and improvements to existing methods of model-fitting and diagnosis are important in order to make the most of the data that are collected in these surveys and to avoid conclusions that may be misleading or erroneous. The research is supported by the Methodology, Measurement, and Statistics Program and a consortium of federal statistical agencies as part of a joint activity to support research on survey and statistical methodology.
线性回归模型的诊断作为选项包含在许多统计软件包中,现在可供分析师轻松使用。 然而,这些工具通常针对普通或加权最小二乘回归,并且不考虑分层、聚类和调查权重,这些是复杂样本调查中收集的数据集的特征。 普通的最小二乘诊断可能会误导用户,因为标准程序通常会错误地估计模型参数估计的方差。 方差或标准误差估计是许多诊断的重要组成部分。 这项研究将调整现有的诊断方法以与调查数据一起使用,并在必要时开发新的诊断方法。 该项目还将研究现有线性回归诊断应用于复杂调查数据时的属性。 需要扩展来覆盖集群和非集群数据。 要研究的特定技术是:线性回归的杠杆及其影响力的启发式截断;杠杆分布,包括直方图和分位数;修改对模型参数估计和预测值影响的单位删除测量以及用于识别有影响的观察结果的经验法则;由于删除一个观察值或一组观察值而导致标准误差估计发生变化;共线性诊断的扩展,包括方差膨胀因子和参数估计的方差分解。美国政府机构和其他国内和国际组织赞助的许多调查中收集的数据用于拟合统计模型。 这些模型用于了解疾病、失业、教育成就水平和其他主题的相关性。 这些调查通常是分层的、单阶段或多阶段的调查,其中各个单位的调查权重可以有很大不同。 实质性领域的一些例子包括医疗条件、医疗保健支出、家庭和儿童的社会福利以及教育进步状况。 为了充分利用这些调查中收集的数据并避免可能误导或错误的结论,对现有模型拟合和诊断方法的评估和改进非常重要。 该研究得到了方法、测量和统计计划以及联邦统计机构联盟的支持,作为支持调查和统计方法研究的联合活动的一部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Valliant其他文献

Richard Valliant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Valliant', 18)}}的其他基金

Doctoral Dissertation Research: Investigating the Bias of Alternative Statistical Inference Methods in Sequential Mixed-Mode Surveys
博士论文研究:调查序贯混合模式调查中替代统计推断方法的偏差
  • 批准号:
    1238612
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Calibration with Estimated Controls
使用估计控制进行校准
  • 批准号:
    0924250
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Model-based Properties of Replication Variance Estimators for Sample Surveys
样本调查复制方差估计器的基于模型的属性
  • 批准号:
    0416662
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

氟-18标记咪唑啉I2受体显像剂的研究及其在AD早期诊断中的应用探索
  • 批准号:
    22306014
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于非渐近估计的复杂微电网故障诊断与运行稳定性控制理论研究
  • 批准号:
    62303133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向脑疾病高效可信诊断的多模态时空数据挖掘
  • 批准号:
    62376065
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
血清IgG N-糖肽作为诊断SLE的生物标志物研究
  • 批准号:
    82360324
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
番茄时序图像表型数据驱动的生长动态监测与诊断模型构建
  • 批准号:
    32301692
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Epidemiology and determinants of emerging artemisinin-resistant malaria in Ethiopia
埃塞俄比亚新出现的青蒿素耐药性疟疾的流行病学和决定因素
  • 批准号:
    10718838
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Extracorporeal and Endoscopic SWIR Mapping of Dynamic Muscle Function
动态肌肉功能的体外和内窥镜短波红外映射
  • 批准号:
    10650439
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Molecular and cellular imaging of bone biopsies using AI augmented deep UV Raman microscopy
使用 AI 增强深紫外拉曼显微镜对骨活检进行分子和细胞成像
  • 批准号:
    10413606
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Molecular and cellular imaging of bone biopsies using AI augmented deep UV Raman microscopy
使用 AI 增强深紫外拉曼显微镜对骨活检进行分子和细胞成像
  • 批准号:
    10657760
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Determination of biomarkers of iron status and inflammation in saliva.
唾液中铁状态和炎症生物标志物的测定。
  • 批准号:
    10303822
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了